Prototype-based explanations are a well-established technique in eXplainable Artificial Intelligence (XAI), commonly used for classification problems like image classification. This study presents a novel approach to find prototypical explanations for a protein pocket detection algorithm previously developed by the authors. The method aims to identify pockets that were predicted in a way similar to a specific instance of interest, thereby providing insights into relevant information for medicinal chemists. To validate our approach, we tested it as a binary classification problem, distinguishing between similar and dissimilar pocket pairs using the ProSPECCTs benchmark. The results showed that our method outperformed other state-of-the-art methods, taking into account the uncertainty of the predictions due to variations in the training data. The proposed approach uses k-nearest neighbors in a d-dimensional latent space of pocket descriptors to identify prototypes linked to the instance being explained.

Prototypical Explanations in an AI Method for Protein Pocket Detection / G. Bocchi, A. Micheletti, C. Gratteri, C. Talarico (ITALIAN STATISTICAL SOCIETY SERIES ON ADVANCES IN STATISTICS). - In: Statistics for Innovation II / [a cura di] E. di Bella, V. Gioia, C. Lagazio, S. Zaccarin. - Prima edizione. - [s.l] : Springer Nature, 2025. - ISBN 978-3-031-96302-5. - pp. 195-200 (( convegno SIS Conference "Statistics for Innovation" tenutosi a Genova nel 2025 [10.1007/978-3-031-96303-2_32].

Prototypical Explanations in an AI Method for Protein Pocket Detection

G. Bocchi
Primo
;
A. Micheletti
Secondo
;
2025

Abstract

Prototype-based explanations are a well-established technique in eXplainable Artificial Intelligence (XAI), commonly used for classification problems like image classification. This study presents a novel approach to find prototypical explanations for a protein pocket detection algorithm previously developed by the authors. The method aims to identify pockets that were predicted in a way similar to a specific instance of interest, thereby providing insights into relevant information for medicinal chemists. To validate our approach, we tested it as a binary classification problem, distinguishing between similar and dissimilar pocket pairs using the ProSPECCTs benchmark. The results showed that our method outperformed other state-of-the-art methods, taking into account the uncertainty of the predictions due to variations in the training data. The proposed approach uses k-nearest neighbors in a d-dimensional latent space of pocket descriptors to identify prototypes linked to the instance being explained.
Prototypes; XAI; pocket similarity; GENEO
Settore MATH-03/B - Probabilità e statistica matematica
Settore STAT-01/A - Statistica
2025
Società Italiana di Statistica
Book Part (author)
File in questo prodotto:
File Dimensione Formato  
accepted_version.pdf

embargo fino al 16/06/2026

Descrizione: Versione accettata per la pubblicazione
Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 1.83 MB
Formato Adobe PDF
1.83 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
978-3-031-96303-2_32.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Licenza: Nessuna licenza
Dimensione 801.92 kB
Formato Adobe PDF
801.92 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1174415
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex 0
social impact