Background: Stroke, a leading global cause of mortality and neurological disability, is often associated with atherosclerotic carotid artery disease. Distinguishing between symptomatic and asymptomatic carotid artery disease is crucial for appropriate treatment decisions. Radiomics, a quantitative image analysis technique, and machine learning (ML) have emerged as promising tools in Ultrasound (US) imaging, potentially providing a helpful tool in the screening of such lesions. Methods: Pubmed, Web of Science and Scopus databases were searched for relevant studies published from January 2005 to May 2023. The Radiomics Quality Score (RQS) was used to assess methodological quality of studies included in the review. The Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) assessed the risk of bias. Sensitivity, specificity, and logarithmic diagnostic odds ratio (logDOR) meta-analyses have been conducted, alongside an influence analysis. Results: RQS assessed methodological quality, revealing an overall low score and consistent findings with other radiology domains. QUADAS-2 indicated an overall low risk, except for two studies with high bias. The meta-analysis demonstrated that radiomics-based ML models for predicting culprit plaques on US had a satisfactory performance, with a sensitivity of 0.84 and specificity of 0.82. The logDOR analysis confirmed the positive results, yielding a pooled logDOR of 3.54. The summary ROC curve provided an AUC of 0.887. Conclusion: Radiomics combined with ML provide high sensitivity and low false positive rate for carotid plaque vulnerability assessment on US. However, current evidence is not definitive, given the low overall study quality and high inter-study heterogeneity. High quality, prospective studies are needed to confirm the potential of these promising techniques.

Radiomics-based machine learning atherosclerotic carotid artery disease in ultrasound: systematic review with meta-analysis of RQS / S. Vacca, R. Scicolone, F. Pisu, R. Cau, Q. Yang, A. Annoni, G. Pontone, F. Costa, K.I. Paraskevas, A. Nicolaides, J.S. Suri, L. Saba. - In: JOURNAL OF ULTRASOUND. - ISSN 1876-7931. - (2025 Jun). [Epub ahead of print] [10.1007/s40477-025-01002-1]

Radiomics-based machine learning atherosclerotic carotid artery disease in ultrasound: systematic review with meta-analysis of RQS

G. Pontone;
2025

Abstract

Background: Stroke, a leading global cause of mortality and neurological disability, is often associated with atherosclerotic carotid artery disease. Distinguishing between symptomatic and asymptomatic carotid artery disease is crucial for appropriate treatment decisions. Radiomics, a quantitative image analysis technique, and machine learning (ML) have emerged as promising tools in Ultrasound (US) imaging, potentially providing a helpful tool in the screening of such lesions. Methods: Pubmed, Web of Science and Scopus databases were searched for relevant studies published from January 2005 to May 2023. The Radiomics Quality Score (RQS) was used to assess methodological quality of studies included in the review. The Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) assessed the risk of bias. Sensitivity, specificity, and logarithmic diagnostic odds ratio (logDOR) meta-analyses have been conducted, alongside an influence analysis. Results: RQS assessed methodological quality, revealing an overall low score and consistent findings with other radiology domains. QUADAS-2 indicated an overall low risk, except for two studies with high bias. The meta-analysis demonstrated that radiomics-based ML models for predicting culprit plaques on US had a satisfactory performance, with a sensitivity of 0.84 and specificity of 0.82. The logDOR analysis confirmed the positive results, yielding a pooled logDOR of 3.54. The summary ROC curve provided an AUC of 0.887. Conclusion: Radiomics combined with ML provide high sensitivity and low false positive rate for carotid plaque vulnerability assessment on US. However, current evidence is not definitive, given the low overall study quality and high inter-study heterogeneity. High quality, prospective studies are needed to confirm the potential of these promising techniques.
Artificial Intelligence; Carotid; Radiomics; Stroke
Settore MEDS-07/B - Malattie dell'apparato cardiovascolare
giu-2025
Article (author)
File in questo prodotto:
File Dimensione Formato  
Radiomics.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Licenza: Nessuna licenza
Dimensione 1.68 MB
Formato Adobe PDF
1.68 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1174225
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact