We propose a geometric approach to construct the Cauchy evolution operator for the Lorentzian Dirac operator on Cauchy-compact globally hyperbolic 4-manifolds. We realize the Cauchy evolution operator as the sum of two invariantly defined oscillatory integrals—the positive and negative Dirac propagators—global in space and in time, with distinguished complex-valued geometric phase functions. As applications, we relate the Cauchy evolution operators with the Feynman propagator and construct Cauchy surfaces covariances of quasifree Hadamard states.

Global and microlocal aspects of Dirac operators: Propagators and Hadamard states / M. Capoferri, S. Murro. - In: MATHEMATISCHE NACHRICHTEN. - ISSN 0025-584X. - (2025), pp. 1-33. [Epub ahead of print] [10.1002/mana.12032]

Global and microlocal aspects of Dirac operators: Propagators and Hadamard states

M. Capoferri
Primo
;
2025

Abstract

We propose a geometric approach to construct the Cauchy evolution operator for the Lorentzian Dirac operator on Cauchy-compact globally hyperbolic 4-manifolds. We realize the Cauchy evolution operator as the sum of two invariantly defined oscillatory integrals—the positive and negative Dirac propagators—global in space and in time, with distinguished complex-valued geometric phase functions. As applications, we relate the Cauchy evolution operators with the Feynman propagator and construct Cauchy surfaces covariances of quasifree Hadamard states.
Settore MATH-03/A - Analisi matematica
Settore MATH-04/A - Fisica matematica
2025
27-giu-2025
Article (author)
File in questo prodotto:
File Dimensione Formato  
Mathematische Nachrichten - 2025 - Capoferri - Global and microlocal aspects of Dirac operators Propagators and Hadamard.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Licenza: Creative commons
Dimensione 530.52 kB
Formato Adobe PDF
530.52 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1174215
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex 0
social impact