Quantum secure direct communication (QSDC) is an evolving quantum communication framework based on transmitting secure information directly through a quantum channel, without relying on key-based encryption such as in quantum key distribution (QKD). Optical QSDC protocols, utilizing discrete and continuous variable encodings, show great promise for future technological applications. We present the first table-top continuous-variable QSDC proof of principle, analyzing its implementation and comparing the use of coherent against squeezed light sources. A simple beam-splitter attack is analyzed by using Wyner wiretap channel theory. Our study illustrates the advantage of squeezed states over coherent ones for enhanced security and reliable communication in lossy and noisy channels. Our practical implementation, utilizing mature telecom components, could foster secure quantum metropolitan networks compatible with advanced multiplexing systems.
Experimental direct quantum communication with squeezed states / I. Paparelle, F. Mousavi, F. Scazza, A. Bassi, M. Paris, A. Zavatta. - In: OPTICS EXPRESS. - ISSN 1094-4087. - 33:14(2025), pp. 28917-28934. [10.1364/oe.538593]
Experimental direct quantum communication with squeezed states
M. ParisPenultimo
;
2025
Abstract
Quantum secure direct communication (QSDC) is an evolving quantum communication framework based on transmitting secure information directly through a quantum channel, without relying on key-based encryption such as in quantum key distribution (QKD). Optical QSDC protocols, utilizing discrete and continuous variable encodings, show great promise for future technological applications. We present the first table-top continuous-variable QSDC proof of principle, analyzing its implementation and comparing the use of coherent against squeezed light sources. A simple beam-splitter attack is analyzed by using Wyner wiretap channel theory. Our study illustrates the advantage of squeezed states over coherent ones for enhanced security and reliable communication in lossy and noisy channels. Our practical implementation, utilizing mature telecom components, could foster secure quantum metropolitan networks compatible with advanced multiplexing systems.| File | Dimensione | Formato | |
|---|---|---|---|
|
oe-33-14-28917.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Licenza:
Creative commons
Dimensione
3.9 MB
Formato
Adobe PDF
|
3.9 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




