A celebrated result by Gidas, Ni & Nirenberg asserts that positive classical solutions, decaying at infinity, to semilinear equations Δu+f(u)=0 in Rn must be radial and radially decreasing. In this paper, we consider both energy solutions in D1,2(Rn) and non-energy local weak solutions to small perturbations of these equations, and study its quantitative stability counterpart. To the best of our knowledge, the present work provides the first quantitative stability result for non-energy solutions to semilinear equations involving the Laplacian, even for the critical nonlinearity.
A quantitative study of radial symmetry for solutions to semilinear equations in Rn / G. Ciraolo, M. Cozzi, M. Gatti. - In: JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES. - ISSN 0021-7824. - 204:(2025 Dec), pp. 103755.1-103755.45. [10.1016/j.matpur.2025.103755]
A quantitative study of radial symmetry for solutions to semilinear equations in Rn
G. CiraoloPrimo
;M. CozziPenultimo
;M. GattiUltimo
2025
Abstract
A celebrated result by Gidas, Ni & Nirenberg asserts that positive classical solutions, decaying at infinity, to semilinear equations Δu+f(u)=0 in Rn must be radial and radially decreasing. In this paper, we consider both energy solutions in D1,2(Rn) and non-energy local weak solutions to small perturbations of these equations, and study its quantitative stability counterpart. To the best of our knowledge, the present work provides the first quantitative stability result for non-energy solutions to semilinear equations involving the Laplacian, even for the critical nonlinearity.| File | Dimensione | Formato | |
|---|---|---|---|
|
2501.11595v1.pdf
accesso aperto
Tipologia:
Pre-print (manoscritto inviato all'editore)
Licenza:
Creative commons
Dimensione
549.75 kB
Formato
Adobe PDF
|
549.75 kB | Adobe PDF | Visualizza/Apri |
|
1-s2.0-S0021782425000996-main.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Licenza:
Nessuna licenza
Dimensione
1.09 MB
Formato
Adobe PDF
|
1.09 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




