A celebrated result by Gidas, Ni & Nirenberg asserts that positive classical solutions, decaying at infinity, to semilinear equations Δu+f(u)=0 in Rn must be radial and radially decreasing. In this paper, we consider both energy solutions in D1,2(Rn) and non-energy local weak solutions to small perturbations of these equations, and study its quantitative stability counterpart. To the best of our knowledge, the present work provides the first quantitative stability result for non-energy solutions to semilinear equations involving the Laplacian, even for the critical nonlinearity.

A quantitative study of radial symmetry for solutions to semilinear equations in Rn / G. Ciraolo, M. Cozzi, M. Gatti. - In: JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES. - ISSN 0021-7824. - 204:(2025 Dec), pp. 103755.1-103755.45. [10.1016/j.matpur.2025.103755]

A quantitative study of radial symmetry for solutions to semilinear equations in Rn

G. Ciraolo
Primo
;
M. Cozzi
Penultimo
;
M. Gatti
Ultimo
2025

Abstract

A celebrated result by Gidas, Ni & Nirenberg asserts that positive classical solutions, decaying at infinity, to semilinear equations Δu+f(u)=0 in Rn must be radial and radially decreasing. In this paper, we consider both energy solutions in D1,2(Rn) and non-energy local weak solutions to small perturbations of these equations, and study its quantitative stability counterpart. To the best of our knowledge, the present work provides the first quantitative stability result for non-energy solutions to semilinear equations involving the Laplacian, even for the critical nonlinearity.
No
English
Un résultat célèbre de Gidas, Ni & Nirenberg affirme que les solutions classiques positives, nulles à l'infini, des équations semi-linéaires dans doivent être radiales et radialement décroissantes. Dans cet article, nous considérons à la fois les solutions d'énergie dans et les solutions faibles locales, sans énergie, de petites perturbations de ces équations, et nous étudions leur stabilité quantitative. À notre connaissance, le présent travail fournit le premier résultat de stabilité quantitative pour des solutions sans énergie d'équations semi-linéaires faisant intervenir le laplacien, même dans le cas de la non-linéarité critique.
Moving planes method; Quantitative estimates; Semilinear elliptic equations; Stability;
Settore MATH-03/A - Analisi matematica
Articolo
Esperti anonimi
Pubblicazione scientifica
   Assegnazione Dipartimenti di Eccellenza 2023-2027 - Dipartimento di MATEMATICA 'FEDERIGO ENRIQUES'
   DECC23_012
   MINISTERO DELL'UNIVERSITA' E DELLA RICERCA

   Partial differential equations and related geometric-functional inequalities.
   MINISTERO DELL'UNIVERSITA' E DELLA RICERCA
   20229M52AS_004
dic-2025
Elsevier
204
103755
1
45
45
Pubblicato
Periodico con rilevanza internazionale
scopus
Aderisco
info:eu-repo/semantics/article
A quantitative study of radial symmetry for solutions to semilinear equations in Rn / G. Ciraolo, M. Cozzi, M. Gatti. - In: JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES. - ISSN 0021-7824. - 204:(2025 Dec), pp. 103755.1-103755.45. [10.1016/j.matpur.2025.103755]
partially_open
Prodotti della ricerca::01 - Articolo su periodico
3
262
Article (author)
Periodico con Impact Factor
G. Ciraolo, M. Cozzi, M. Gatti
File in questo prodotto:
File Dimensione Formato  
2501.11595v1.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Licenza: Creative commons
Dimensione 549.75 kB
Formato Adobe PDF
549.75 kB Adobe PDF Visualizza/Apri
1-s2.0-S0021782425000996-main.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Licenza: Nessuna licenza
Dimensione 1.09 MB
Formato Adobe PDF
1.09 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1173555
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex 1
social impact