This study describes the potential of the conditioned medium (CM) from adipose-derived mesenchymal stromal cells (ASCs) to affect the response of bone cells and support bone remodeling. This was in particular assessed by an in vitro model represented by a 3D human osteoblast-osteoclast co-culture. It has been reported that the effects of ASCs are predominantly attributable to the paracrine effects of their secreted factors, that are present as soluble factors or loaded into extracellular vesicles. They may affect various biological processes, including bone turnover. Our interest was to provide further evidence to support ASC-CM as a promising cell-free therapeutic agent for the treatment of bone loss. ASC-CM was characterized using nanoparticle tracking analysis (NTA), cytofluorimetry, and proteomic analysis. Human osteoblasts (hOBs) from vertebral lamina were cultured with monocytes, as osteoclasts (hOCs) precursors, in a Rotary cell culture system for 14 days. Histochemical analysis was performed to evaluate the effect of ASC-CM on bone-specific markers such as tartrate-resistant acid phosphatase (TRAP), osteopontin (OPN), RUNX2, Collagen 1 (COL1), and mineral matrix. ASC-CM characterization confirmed the content of CD63/CD81/CD9 positive extracellular vesicles. Proteomic dataset considering bone-remodeling-related keywords identified 16 processes significantly enriched. The exposure of hOBs/hOCs aggregates to ASC-CM induced increase of OPN, COL I, and RUNX2, and significantly induced mineral matrix deposition, while significantly reducing TRAP expression. These data demonstrated that CM from ASCs contains a complex of secreted factors able to control either bone resorption or bone formation and requires further investigations to deeply analyze their potential therapeutic effects.
Adipose-Derived Stromal Cell Conditioned Medium on Bone Remodeling: Insights from a 3D Osteoblast-Osteoclast Co-Culture Model / E. Della Morte, M. Pina Notarangelo, S. Niada, C. Giannasi, F. Fortuna, F. Cadelano, E. Lambertini, R. Piva, A.T.M. Brini, L. Penolazzi. - In: CALCIFIED TISSUE INTERNATIONAL. - ISSN 0171-967X. - 116:1(2025 Jan), pp. 26.1-26.10. [10.1007/s00223-024-01335-9]
Adipose-Derived Stromal Cell Conditioned Medium on Bone Remodeling: Insights from a 3D Osteoblast-Osteoclast Co-Culture Model
S. Niada;C. Giannasi;F. Cadelano;A.T.M. Brini;
2025
Abstract
This study describes the potential of the conditioned medium (CM) from adipose-derived mesenchymal stromal cells (ASCs) to affect the response of bone cells and support bone remodeling. This was in particular assessed by an in vitro model represented by a 3D human osteoblast-osteoclast co-culture. It has been reported that the effects of ASCs are predominantly attributable to the paracrine effects of their secreted factors, that are present as soluble factors or loaded into extracellular vesicles. They may affect various biological processes, including bone turnover. Our interest was to provide further evidence to support ASC-CM as a promising cell-free therapeutic agent for the treatment of bone loss. ASC-CM was characterized using nanoparticle tracking analysis (NTA), cytofluorimetry, and proteomic analysis. Human osteoblasts (hOBs) from vertebral lamina were cultured with monocytes, as osteoclasts (hOCs) precursors, in a Rotary cell culture system for 14 days. Histochemical analysis was performed to evaluate the effect of ASC-CM on bone-specific markers such as tartrate-resistant acid phosphatase (TRAP), osteopontin (OPN), RUNX2, Collagen 1 (COL1), and mineral matrix. ASC-CM characterization confirmed the content of CD63/CD81/CD9 positive extracellular vesicles. Proteomic dataset considering bone-remodeling-related keywords identified 16 processes significantly enriched. The exposure of hOBs/hOCs aggregates to ASC-CM induced increase of OPN, COL I, and RUNX2, and significantly induced mineral matrix deposition, while significantly reducing TRAP expression. These data demonstrated that CM from ASCs contains a complex of secreted factors able to control either bone resorption or bone formation and requires further investigations to deeply analyze their potential therapeutic effects.| File | Dimensione | Formato | |
|---|---|---|---|
|
s00223-024-01335-9.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Licenza:
Nessuna licenza
Dimensione
4.29 MB
Formato
Adobe PDF
|
4.29 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




