The convergence of network science and artificial intelligence (AI) represents a rich area of research, where both fields can mutually enhance one another. Network science offers a comprehensive framework to analyze and model complex relationships, while machine learning (ML) and AI provide powerful tools for recognizing patterns and making predictions from large datasets. Combining these two disciplines can advance the study of complex systems and lead to new innovations in data-driven research. This tutorial paper reviews fundamental concepts of network science, describes the current and promising research direction for bridging network science and AI, and summarizes the contributions that have been accepted for publication in the ESANN 2025 special session on the topic.

Network Science Meets AI: A Converging Frontier / M. Zignani, F.D. Malliaros, I. Scholtes, R. Interdonato, M. Dileo - In: ESANN 2025 : Proceedings[s.l] : i6doc.com, 2025. - ISBN 9782875870926. (( Intervento presentato al 33. convegno European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning : 23-25 April tenutosi a Bruges nel 2025 [10.14428/esann/2025.ES2025-28].

Network Science Meets AI: A Converging Frontier

M. Zignani
Primo
;
M. Dileo
Ultimo
2025

Abstract

The convergence of network science and artificial intelligence (AI) represents a rich area of research, where both fields can mutually enhance one another. Network science offers a comprehensive framework to analyze and model complex relationships, while machine learning (ML) and AI provide powerful tools for recognizing patterns and making predictions from large datasets. Combining these two disciplines can advance the study of complex systems and lead to new innovations in data-driven research. This tutorial paper reviews fundamental concepts of network science, describes the current and promising research direction for bridging network science and AI, and summarizes the contributions that have been accepted for publication in the ESANN 2025 special session on the topic.
Settore INFO-01/A - Informatica
2025
https://doi.org/10.14428/esann/2025.ES2025-28
Book Part (author)
File in questo prodotto:
File Dimensione Formato  
2025_PaperSpecialSession_ESANN.pdf

accesso riservato

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 316.9 kB
Formato Adobe PDF
316.9 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1172358
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact