Antibiotics are essential chemicals for medicine and agritech. However, all antibiotics are small molecules that pathogens evolve antimicrobial resistance (AMR). Alternatively, antimicrobial peptides (AMPs) offer potential to overcome or evade AMR. AMPs provide broad-spectrum activity, favourable biosafety profiles, and a rapid and efficient mechanism of action with low resistance incidence. These properties have driven innovative applications, positioning AMPs as promising contributors to advancements in various industrial sectors. This review evaluates the multifaceted nature of AMPs and their biotechnological applications in underexplored sectors. In the food industry, the application of AMPs helps to suppress the growth of microorganisms, thereby decreasing foodborne illnesses, minimizing food waste, and prolonging the shelf life of products. In animal husbandry and aquaculture, incorporating AMPs into the diet reduces the load of pathogenic microorganisms and enhances growth performance and survival rates. In agriculture, AMPs provide an alternative to decrease the use of chemical pesticides and antibiotics. We also review current methods for obtaining AMPs, including chemical synthesis, recombinant DNA technology, cell-free protein synthesis, and molecular farming, are also reviewed. Finally, we look to the peptide market to assess its status, progress, and transition from the discovery stage to benefits for society and high-quality products. Overall, our review exemplifies the other side of the coin of AMPs and how these molecules provide similar benefits to conventional antibiotics and pesticides in the agritech sector.
Revolutionizing agroindustry: Towards the industrial application of antimicrobial peptides against pathogens and pests / S. Bermúdez-Puga, B. Mendes, J.P. Ramos-Galarza, P. Oliveira De Souza De Azevedo, A. Converti, F. Molinari, S.J. Moore, J.R. Almeida, R. Pinheiro De Souza Oliveira. - In: BIOTECHNOLOGY ADVANCES. - ISSN 0734-9750. - 82:(2025 Sep), pp. 108605.1-108605.21. [10.1016/j.biotechadv.2025.108605]
Revolutionizing agroindustry: Towards the industrial application of antimicrobial peptides against pathogens and pests
F. Molinari;
2025
Abstract
Antibiotics are essential chemicals for medicine and agritech. However, all antibiotics are small molecules that pathogens evolve antimicrobial resistance (AMR). Alternatively, antimicrobial peptides (AMPs) offer potential to overcome or evade AMR. AMPs provide broad-spectrum activity, favourable biosafety profiles, and a rapid and efficient mechanism of action with low resistance incidence. These properties have driven innovative applications, positioning AMPs as promising contributors to advancements in various industrial sectors. This review evaluates the multifaceted nature of AMPs and their biotechnological applications in underexplored sectors. In the food industry, the application of AMPs helps to suppress the growth of microorganisms, thereby decreasing foodborne illnesses, minimizing food waste, and prolonging the shelf life of products. In animal husbandry and aquaculture, incorporating AMPs into the diet reduces the load of pathogenic microorganisms and enhances growth performance and survival rates. In agriculture, AMPs provide an alternative to decrease the use of chemical pesticides and antibiotics. We also review current methods for obtaining AMPs, including chemical synthesis, recombinant DNA technology, cell-free protein synthesis, and molecular farming, are also reviewed. Finally, we look to the peptide market to assess its status, progress, and transition from the discovery stage to benefits for society and high-quality products. Overall, our review exemplifies the other side of the coin of AMPs and how these molecules provide similar benefits to conventional antibiotics and pesticides in the agritech sector.| File | Dimensione | Formato | |
|---|---|---|---|
|
Revolutionizing-agroindustry--Towards-the-industrial-applic_2025_Biotechnolo.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Licenza:
Nessuna licenza
Dimensione
4.08 MB
Formato
Adobe PDF
|
4.08 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




