We sought to develop a survival model in chronic myelomonocytic leukemia (CMML) that is primarily based on clinical variables and examine additional impact from mutations and karyotype. 457 molecularly-annotated patients were considered. Multivariable analysis identified circulating Blasts ≥2% (1 point), Leukocytes ≥13 x 109/L (1 point), and severe (2 points) or moderate (1 point) Anemia as preferred risk variables in developing a clinical risk Stratification Tool for overall survival (OS), acronymized to "BLAST": low-risk (0 points; median 63 months); intermediate-risk (1 point; median 28 months; HR 2.2, 95% CI 1.6-3.0), and high-risk (2-4 points; median 13 months; 5.4, 4.1-7.3); the corresponding 3/5 year OS rates were 68%/53%, 43%/18%, and 12%/1%. BLAST model performance (AUC 0.77/0.85 at 3/5-years) was shown to be comparable to that of the molecular CMML-specific prognostic scoring system (CMML-mol; AUC 0.73/0.75) and the international prognostic scoring system-molecular (IPSS-M; AUC 0.73/0.74). Multivariable analysis of mutations and karyotype identified PHF6MUT and TET2MUT as being "favorable" and DNMT3AMUT, U2AF1MUT, BCORMUT, SETBP1MUT, ASXL1MUT, NRASMUT, PTPN11MUT, RUNX1MUT, TP53MUT, and adverse karyotype, "unfavorable". Molecular information was subsequently encoded in a combined clinical-molecular risk model (BLAST-mol; AUC 0.80/0.86 at 3/5-years) that included the aforementioned BLAST clinical risk variables and a 3-tiered molecular risk score. BLAST and BLAST-mol were subsequently validated by two separate external cohorts. Independent risk factors for blast transformation included DNMT3AMUT, ASXL1MUT, PHF6WT, leukocytes ≥13 x 109/L, and ≥2% circulating or ≥10% bone marrow blasts. The current study proposes an easy to implement, globally applicable, and molecularly adaptive risk model for CMML.

BLAST: A Globally Applicable and Molecularly Versatile Survival Model for Chronic Myelomonocytic Leukemia / A. Tefferi, S. Fathima, M. Abdelmagid, A. Alsugair, F. Aperna, M. Rezasoltani, M. Yousuf, A. Natu, C.M. Csizmar, M. Gurney, T.L. Lasho, C.M. Finke, R. Kanagal-Shamanna, D. Hammond, K.S. Chien, A. Bazinet, C.D. Dinardo, T.M. Kadia, A.A. Mangaonkar, N.G. Daver, A.D. Pardanani, G. Borthakur, C.J. Zepeda-Mendoza, K.K. Reichard, R. He, S. Loghavi, F. Passamonti, F. Ravandi, K. Sasaki, D. Larson, G. Garcia-Manero, F. Onida, N. Gangat, G. Montalban-Bravo, M.M. Patnaik. - In: BLOOD. - ISSN 0006-4971. - (2025). [Epub ahead of print] [10.1182/blood.2024027170]

BLAST: A Globally Applicable and Molecularly Versatile Survival Model for Chronic Myelomonocytic Leukemia

F. Passamonti;F. Onida;
2025

Abstract

We sought to develop a survival model in chronic myelomonocytic leukemia (CMML) that is primarily based on clinical variables and examine additional impact from mutations and karyotype. 457 molecularly-annotated patients were considered. Multivariable analysis identified circulating Blasts ≥2% (1 point), Leukocytes ≥13 x 109/L (1 point), and severe (2 points) or moderate (1 point) Anemia as preferred risk variables in developing a clinical risk Stratification Tool for overall survival (OS), acronymized to "BLAST": low-risk (0 points; median 63 months); intermediate-risk (1 point; median 28 months; HR 2.2, 95% CI 1.6-3.0), and high-risk (2-4 points; median 13 months; 5.4, 4.1-7.3); the corresponding 3/5 year OS rates were 68%/53%, 43%/18%, and 12%/1%. BLAST model performance (AUC 0.77/0.85 at 3/5-years) was shown to be comparable to that of the molecular CMML-specific prognostic scoring system (CMML-mol; AUC 0.73/0.75) and the international prognostic scoring system-molecular (IPSS-M; AUC 0.73/0.74). Multivariable analysis of mutations and karyotype identified PHF6MUT and TET2MUT as being "favorable" and DNMT3AMUT, U2AF1MUT, BCORMUT, SETBP1MUT, ASXL1MUT, NRASMUT, PTPN11MUT, RUNX1MUT, TP53MUT, and adverse karyotype, "unfavorable". Molecular information was subsequently encoded in a combined clinical-molecular risk model (BLAST-mol; AUC 0.80/0.86 at 3/5-years) that included the aforementioned BLAST clinical risk variables and a 3-tiered molecular risk score. BLAST and BLAST-mol were subsequently validated by two separate external cohorts. Independent risk factors for blast transformation included DNMT3AMUT, ASXL1MUT, PHF6WT, leukocytes ≥13 x 109/L, and ≥2% circulating or ≥10% bone marrow blasts. The current study proposes an easy to implement, globally applicable, and molecularly adaptive risk model for CMML.
Settore MEDS-09/B - Malattie del sangue
Settore MEDS-05/A - Medicina interna
Settore MEDS-09/A - Oncologia medica
2025
mag-2025
Article (author)
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0006497125011188-main.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Licenza: Nessuna licenza
Dimensione 2.42 MB
Formato Adobe PDF
2.42 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1169857
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex 10
social impact