For every $\alpha \in (0,+\infty)$ and $p,q \in (1,+\infty)$ let $T_\alpha$ be the operator $L^p[0,1]\to L^q[0,1]$ defined via the equality $(T_\alpha f)(x) := \int_0^{x^\alpha} f(y) dy$. We study the norms of $T_\alpha$ for every $p$, $q$. In the case $p=q$ we further study its spectrum, point spectrum, eigenfunctions, and the norms of its iterates. Moreover, for the case $p=q=2$ we determine the point spectrum and eigenfunctions for $T^*_\alpha T_\alpha$, where $T^*_\alpha$ is the adjoint operator.
A one parameter family of Volterra-type operators / F. Battistoni, G. Molteni. - In: RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO. - ISSN 0009-725X. - 74:1(2025 Feb), pp. 57.1-57.20. [10.1007/s12215-024-01171-8]
A one parameter family of Volterra-type operators
F. BattistoniPrimo
;G. Molteni
Ultimo
2025
Abstract
For every $\alpha \in (0,+\infty)$ and $p,q \in (1,+\infty)$ let $T_\alpha$ be the operator $L^p[0,1]\to L^q[0,1]$ defined via the equality $(T_\alpha f)(x) := \int_0^{x^\alpha} f(y) dy$. We study the norms of $T_\alpha$ for every $p$, $q$. In the case $p=q$ we further study its spectrum, point spectrum, eigenfunctions, and the norms of its iterates. Moreover, for the case $p=q=2$ we determine the point spectrum and eigenfunctions for $T^*_\alpha T_\alpha$, where $T^*_\alpha$ is the adjoint operator.| File | Dimensione | Formato | |
|---|---|---|---|
|
paper.pdf
accesso aperto
Descrizione: articolo
Tipologia:
Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione
437.52 kB
Formato
Adobe PDF
|
437.52 kB | Adobe PDF | Visualizza/Apri |
|
s12215-024-01171-8(1).pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
373.05 kB
Formato
Adobe PDF
|
373.05 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




