For every $\alpha \in (0,+\infty)$ and $p,q \in (1,+\infty)$ let $T_\alpha$ be the operator $L^p[0,1]\to L^q[0,1]$ defined via the equality $(T_\alpha f)(x) := \int_0^{x^\alpha} f(y) dy$. We study the norms of $T_\alpha$ for every $p$, $q$. In the case $p=q$ we further study its spectrum, point spectrum, eigenfunctions, and the norms of its iterates. Moreover, for the case $p=q=2$ we determine the point spectrum and eigenfunctions for $T^*_\alpha T_\alpha$, where $T^*_\alpha$ is the adjoint operator.

A one parameter family of Volterra-type operators / F. Battistoni, G. Molteni. - In: RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO. - ISSN 0009-725X. - 74:1(2025 Feb), pp. 57.1-57.20. [10.1007/s12215-024-01171-8]

A one parameter family of Volterra-type operators

F. Battistoni
Primo
;
G. Molteni
Ultimo
2025

Abstract

For every $\alpha \in (0,+\infty)$ and $p,q \in (1,+\infty)$ let $T_\alpha$ be the operator $L^p[0,1]\to L^q[0,1]$ defined via the equality $(T_\alpha f)(x) := \int_0^{x^\alpha} f(y) dy$. We study the norms of $T_\alpha$ for every $p$, $q$. In the case $p=q$ we further study its spectrum, point spectrum, eigenfunctions, and the norms of its iterates. Moreover, for the case $p=q=2$ we determine the point spectrum and eigenfunctions for $T^*_\alpha T_\alpha$, where $T^*_\alpha$ is the adjoint operator.
Spectrum; Volterra operator;
Settore MATH-03/A - Analisi matematica
feb-2025
23-dic-2024
Article (author)
File in questo prodotto:
File Dimensione Formato  
paper.pdf

accesso aperto

Descrizione: articolo
Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 437.52 kB
Formato Adobe PDF
437.52 kB Adobe PDF Visualizza/Apri
s12215-024-01171-8(1).pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 373.05 kB
Formato Adobe PDF
373.05 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1169215
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex 0
social impact