We establish the existence of quasi-periodic traveling wave solutions for the beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}-plane equation on T2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {T}}<^>2$$\end{document} with a large quasi-periodic traveling wave external force. These solutions exhibit large sizes, which depend on the frequency of oscillations of the external force. Due to the presence of small divisors, the proof relies on a nonlinear Nash-Moser scheme tailored to construct nonlinear waves of large size. To our knowledge, this is the first instance of constructing quasi-periodic solutions for a quasilinear PDE in dimensions greater than one, with a 1-smoothing dispersion relation that is highly degenerate - indicating an infinite-dimensional kernel for the linear principal operator. This degeneracy challenge is overcome by preserving the traveling-wave structure, the conservation of momentum and by implementing normal form methods for the linearized system with sublinear dispersion relation in higher space dimension.

Large Amplitude Quasi-Periodic Traveling Waves in Two Dimensional Forced Rotating Fluids / R. Bianchini, L. Franzoi, R. Montalto, S. Terracina. - In: COMMUNICATIONS IN MATHEMATICAL PHYSICS. - ISSN 0010-3616. - 406:3(2025), pp. 66.1-66.67. [10.1007/s00220-025-05247-z]

Large Amplitude Quasi-Periodic Traveling Waves in Two Dimensional Forced Rotating Fluids

L. Franzoi
Secondo
;
R. Montalto
Penultimo
;
S. Terracina
Ultimo
2025

Abstract

We establish the existence of quasi-periodic traveling wave solutions for the beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}-plane equation on T2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {T}}<^>2$$\end{document} with a large quasi-periodic traveling wave external force. These solutions exhibit large sizes, which depend on the frequency of oscillations of the external force. Due to the presence of small divisors, the proof relies on a nonlinear Nash-Moser scheme tailored to construct nonlinear waves of large size. To our knowledge, this is the first instance of constructing quasi-periodic solutions for a quasilinear PDE in dimensions greater than one, with a 1-smoothing dispersion relation that is highly degenerate - indicating an infinite-dimensional kernel for the linear principal operator. This degeneracy challenge is overcome by preserving the traveling-wave structure, the conservation of momentum and by implementing normal form methods for the linearized system with sublinear dispersion relation in higher space dimension.
No
English
Settore MATH-04/A - Fisica matematica
Settore MATH-03/A - Analisi matematica
Articolo
Esperti anonimi
Pubblicazione scientifica
   Hamiltonian Dynamics, Normal forms and Water Waves (HamDyWWa)
   HamDyWWa
   EUROPEAN COMMISSION
   101039762

   TESEO - Arianna's strands in the digital age
   European Commission
   ERASMUS+
   2019-1-IT02-KA203-062403
2025
20-feb-2025
Springer
406
3
66
1
67
67
Pubblicato
Periodico con rilevanza internazionale
scopus
Aderisco
info:eu-repo/semantics/article
Large Amplitude Quasi-Periodic Traveling Waves in Two Dimensional Forced Rotating Fluids / R. Bianchini, L. Franzoi, R. Montalto, S. Terracina. - In: COMMUNICATIONS IN MATHEMATICAL PHYSICS. - ISSN 0010-3616. - 406:3(2025), pp. 66.1-66.67. [10.1007/s00220-025-05247-z]
open
Prodotti della ricerca::01 - Articolo su periodico
4
262
Article (author)
Periodico con Impact Factor
R. Bianchini, L. Franzoi, R. Montalto, S. Terracina
File in questo prodotto:
File Dimensione Formato  
s00220-025-05247-z.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Licenza: Creative commons
Dimensione 1.13 MB
Formato Adobe PDF
1.13 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1165607
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact