In this paper, we study positive solutions u of the homogeneous Dirichlet problem for the p-Laplace equation -Δpu=f(u) in a bounded domain Ω⊂RN, where N≥2, 1<+∞ and f is a discontinuous function. We address the quantitative stability of a Gidas–Ni–Nirenberg type symmetry result for u, which was established by Lions [24] and Serra [29] when Ω is a ball. By exploiting a quantitative version of the Pólya–Szegö principle, we prove that the deviation of u from its Schwarz symmetrization can be estimated in terms of the isoperimetric deficit of Ω.

A quantitative symmetry result for p-Laplace equations with discontinuous nonlinearities / G. Ciraolo, X. Li. - In: MATHEMATISCHE ANNALEN. - ISSN 0025-5831. - 392:2(2025), pp. 110585.2131-110585.2155. [10.1007/s00208-025-03151-4]

A quantitative symmetry result for p-Laplace equations with discontinuous nonlinearities

G. Ciraolo
Primo
;
X. Li
2025

Abstract

In this paper, we study positive solutions u of the homogeneous Dirichlet problem for the p-Laplace equation -Δpu=f(u) in a bounded domain Ω⊂RN, where N≥2, 1<+∞ and f is a discontinuous function. We address the quantitative stability of a Gidas–Ni–Nirenberg type symmetry result for u, which was established by Lions [24] and Serra [29] when Ω is a ball. By exploiting a quantitative version of the Pólya–Szegö principle, we prove that the deviation of u from its Schwarz symmetrization can be estimated in terms of the isoperimetric deficit of Ω.
Settore MATH-03/A - Analisi matematica
   Partial differential equations and related geometric-functional inequalities.
   MINISTERO DELL'UNIVERSITA' E DELLA RICERCA
   20229M52AS_004
2025
9-apr-2025
Article (author)
File in questo prodotto:
File Dimensione Formato  
53 - Ciraolo-Li-Math Ann 2025.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Licenza: Creative commons
Dimensione 430.1 kB
Formato Adobe PDF
430.1 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1165057
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact