We prove a quantitative Sobolev inequality in cones of Bianchi-Egnell type, which implies a stability property. Our result holds for any cone as long as the minimizers of the Sobolev quotient are nondegenerate. When the minimizers are the classical bubbles we have more precise results. Finally, we show that local estimates are not enough to get the optimal constant for the quantitative Sobolev inequality.

Stability for the Sobolev inequality in cones / G. Ciraolo, F. Pacella, C.C. Polvara. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - 433:(2025 Jul 15), pp. 113325.1-113325.30. [10.1016/j.jde.2025.113325]

Stability for the Sobolev inequality in cones

G. Ciraolo
Primo
;
C.C. Polvara
Ultimo
2025

Abstract

We prove a quantitative Sobolev inequality in cones of Bianchi-Egnell type, which implies a stability property. Our result holds for any cone as long as the minimizers of the Sobolev quotient are nondegenerate. When the minimizers are the classical bubbles we have more precise results. Finally, we show that local estimates are not enough to get the optimal constant for the quantitative Sobolev inequality.
Nonradial minimizers; Quantitative estimates; Sobolev inequality in cones;
Settore MATH-03/A - Analisi matematica
15-lug-2025
Article (author)
File in questo prodotto:
File Dimensione Formato  
51 - Ciraolo_Pacella_Polvara_JDE_2025.pdf

accesso aperto

Descrizione: versione pubblicata
Tipologia: Publisher's version/PDF
Licenza: Creative commons
Dimensione 516.19 kB
Formato Adobe PDF
516.19 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1165055
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact