A strong quasi-invariance principle and a finite-dimensional integration by parts formula as in the Bismut approach to Malliavin calculus are obtained through a suitable application of Lie symmetry theory to stochastic differential equations. The main stochastic, geometrical and analytical aspects of the theory are discussed and applications to some Brownian motion driven stochastic models are provided.

Integration by parts formulas and Lie symmetries of SDEs / F.C. De Vecchi, P. Morando, S. Ugolini. - In: ELECTRONIC JOURNAL OF PROBABILITY. - ISSN 1083-6489. - 30:(2025), pp. 86.1-86.41. [10.1214/25-ejp1349]

Integration by parts formulas and Lie symmetries of SDEs

F.C. De Vecchi
Primo
;
P. Morando
Secondo
;
S. Ugolini
Ultimo
2025

Abstract

A strong quasi-invariance principle and a finite-dimensional integration by parts formula as in the Bismut approach to Malliavin calculus are obtained through a suitable application of Lie symmetry theory to stochastic differential equations. The main stochastic, geometrical and analytical aspects of the theory are discussed and applications to some Brownian motion driven stochastic models are provided.
integration by parts; Lie symmetry analysis; quasi invariance of SDEs
Settore MATH-03/B - Probabilità e statistica matematica
2025
2025
Article (author)
File in questo prodotto:
File Dimensione Formato  
25-EJP1349_Maggio2025.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Licenza: Creative commons
Dimensione 580.97 kB
Formato Adobe PDF
580.97 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1164070
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex 0
social impact