The expression of multifunctional proteins can facilitate the setup of a biotechnology process that requires multiple functions absolved by different proteins. Herein the functional and conformational characterization of a formate dehydrogenase-monooxygenase chimera enzyme is presented. The fused enzyme (FDH-PAMO) was prepared by linking the C-terminus of the mutant NADP+-dependent formate dehydrogenase from Pseudomonas sp. 101 (FDH) to the N-terminus of the NADPH-dependent monooxygenase from Thermobifida fusca (PAMO) through a peptide linker of 9 amino acids (ASGGGGSGT) generating a chimera protein of 107,056 Da. The catalytic properties (e.g., kinetic parameters kcat and Km), stability, fluorescence and circular dichroism spectra showed that the so-obtained chimera enzyme FDH-PAMO retains the same functional and conformational properties of the two parental enzymes. Furthermore, SEC chromatographic analysis indicated that, in solution (pH 7.4), FDH-PAMO assembles to tetramers (up to 4.2 %) due to the propensity of FDH and PAMO to form dimers, up to 96.6 % and 6.2 %, respectively. This study provides valuable insights into the structural stability of a thermostable protein (e.g., PAMO) after increasing its size through fusion with another similarly sized thermostable protein (e.g., FDH).
Chimeric versus isolated proteins: Biochemical characterization of the NADP+-dependent formate dehydrogenase from Pseudomonas sp. 101 fused with the Baeyer-Villiger monooxygenase from Thermobifida fusca / E. Lio, P. Parshin, E. D'Oronzo, S. Plebani, A.A. Pometun, S.Y. Kleymenov, V.I. Tishkov, F. Secundo. - In: INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES. - ISSN 0141-8130. - 253:Part 2(2023 Dec 31), pp. 126637.1-126637.11. [10.1016/j.ijbiomac.2023.126637]
Chimeric versus isolated proteins: Biochemical characterization of the NADP+-dependent formate dehydrogenase from Pseudomonas sp. 101 fused with the Baeyer-Villiger monooxygenase from Thermobifida fusca
E. LioPrimo
;
2023
Abstract
The expression of multifunctional proteins can facilitate the setup of a biotechnology process that requires multiple functions absolved by different proteins. Herein the functional and conformational characterization of a formate dehydrogenase-monooxygenase chimera enzyme is presented. The fused enzyme (FDH-PAMO) was prepared by linking the C-terminus of the mutant NADP+-dependent formate dehydrogenase from Pseudomonas sp. 101 (FDH) to the N-terminus of the NADPH-dependent monooxygenase from Thermobifida fusca (PAMO) through a peptide linker of 9 amino acids (ASGGGGSGT) generating a chimera protein of 107,056 Da. The catalytic properties (e.g., kinetic parameters kcat and Km), stability, fluorescence and circular dichroism spectra showed that the so-obtained chimera enzyme FDH-PAMO retains the same functional and conformational properties of the two parental enzymes. Furthermore, SEC chromatographic analysis indicated that, in solution (pH 7.4), FDH-PAMO assembles to tetramers (up to 4.2 %) due to the propensity of FDH and PAMO to form dimers, up to 96.6 % and 6.2 %, respectively. This study provides valuable insights into the structural stability of a thermostable protein (e.g., PAMO) after increasing its size through fusion with another similarly sized thermostable protein (e.g., FDH).| File | Dimensione | Formato | |
|---|---|---|---|
|
1-s2.0-S014181302303533X-main.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
4.76 MB
Formato
Adobe PDF
|
4.76 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




