We consider the minimization property of a Gagliardo-Slobodeckij seminorm which can be seen as the fractional counterpart of the classical problem of functions of least gradient and which is related to the minimization of the nonlocal perimeter functional. We discuss continuity properties for this kind of problem. In particular, we show that, under natural structural assumptions, the minimizers are bounded and continuous in the interior of the ambient domain (and, in fact, also continuous up to the boundary under some mild additional hypothesis). We show that these results are also essentially optimal, since in general the minimizer is not necessarily continuous across the boundary.

Continuity of s-minimal functions / C. Bucur, S. Dipierro, L. Lombardini, E. Valdinoci. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - 64:2(2025), pp. 66.1-66.17. [10.1007/s00526-024-02926-y]

Continuity of s-minimal functions

C. Bucur
Primo
;
S. Dipierro
Secondo
;
L. Lombardini
Penultimo
;
E. Valdinoci
Ultimo
2025

Abstract

We consider the minimization property of a Gagliardo-Slobodeckij seminorm which can be seen as the fractional counterpart of the classical problem of functions of least gradient and which is related to the minimization of the nonlocal perimeter functional. We discuss continuity properties for this kind of problem. In particular, we show that, under natural structural assumptions, the minimizers are bounded and continuous in the interior of the ambient domain (and, in fact, also continuous up to the boundary under some mild additional hypothesis). We show that these results are also essentially optimal, since in general the minimizer is not necessarily continuous across the boundary.
Settore MATH-03/A - Analisi matematica
   ARC Future Fellowships - Grant ID: FT230100333
   Australian Research Council (ARC)
   ARC Future Fellowships
   FT230100333

   ARC Future Fellowships - Grant ID: FT230100333
   Australian Research Council (ARC)
   ARC Future Fellowships
   FT230100333
2025
25-gen-2025
Article (author)
File in questo prodotto:
File Dimensione Formato  
CU_Ws1_rev.pdf

embargo fino al 25/01/2026

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 368.77 kB
Formato Adobe PDF
368.77 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
s00526-024-02926-y.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 483.02 kB
Formato Adobe PDF
483.02 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1161615
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact