In this paper, we study the existence of solutions for the equation (−Δ)^s_ 1 u = f in a bounded open set with Lipschitz boundary Ω ⊂ R^n, vanishing on R^n \ Ω, given some s ∈ (0, 1). Contextually, we obtain that the sequence of solutions for (−Δ)^s_p u = f convergences to a solution of (−Δ)^s_1 u = f when p → 1. We obtain our existence and convergence results by comparing the L^(n/s) norm of f to 1/(2S_{n,s}), where S_{n,s} is the sharp fractional Sobolev constant, or, when f is non-negative, a weighted version of the fractional Cheegar constant to 1, and in this case, the results are sharp. We further prove that solutions are “flat” on sets of positive Lebesgue measure.

Solutions of the fractional 1-Laplacian: existence, asymptotics and flatness results / C. Bucur. - In: NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS. - ISSN 1021-9722. - 32:3(2025), pp. 52.1-52.45. [10.1007/s00030-025-01052-8]

Solutions of the fractional 1-Laplacian: existence, asymptotics and flatness results

C. Bucur
2025

Abstract

In this paper, we study the existence of solutions for the equation (−Δ)^s_ 1 u = f in a bounded open set with Lipschitz boundary Ω ⊂ R^n, vanishing on R^n \ Ω, given some s ∈ (0, 1). Contextually, we obtain that the sequence of solutions for (−Δ)^s_p u = f convergences to a solution of (−Δ)^s_1 u = f when p → 1. We obtain our existence and convergence results by comparing the L^(n/s) norm of f to 1/(2S_{n,s}), where S_{n,s} is the sharp fractional Sobolev constant, or, when f is non-negative, a weighted version of the fractional Cheegar constant to 1, and in this case, the results are sharp. We further prove that solutions are “flat” on sets of positive Lebesgue measure.
Settore MATH-03/A - Analisi matematica
2025
25-apr-2025
Article (author)
File in questo prodotto:
File Dimensione Formato  
Frac1Lv3.pdf

embargo fino al 25/04/2026

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 458.04 kB
Formato Adobe PDF
458.04 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
s00030-025-01052-8.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 669.64 kB
Formato Adobe PDF
669.64 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1161596
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex 1
social impact