Most widely used machine learning potentials for condensed-phase applications rely on many-body permutationally invariant polynomial or atom-centered neural networks. However, these approaches face challenges in achieving chemical interpretability in atomistic energy decomposition and fully matching the computational efficiency of traditional force fields. Here we present a method that combines aspects of both approaches and balances accuracy and force-field-level speed. This method utilizes a monomer-centered representation, where the potential energy is decomposed into the sum of chemically meaningful monomeric energies. The structural descriptors of monomers are described by one-body and two-body effective interactions, enforced by appropriate sets of permutationally invariant polynomials as inputs to the feed-forward neural networks. Systematic assessments of models for gas-phase water trimer, liquid water, methane–water cluster and liquid carbon dioxide are performed. The improved accuracy, efficiency and flexibility of this method have promise for constructing accurate machine learning potentials and enabling large-scale quantum and classical simulations for complex molecular systems.

Extending atomic decomposition and many-body representation with a chemistry-motivated approach to machine learning potentials / Q. Yu, R. Ma, C. Qu, R. Conte, A. Nandi, P. Pandey, P.L. Houston, D.H. Zhang, J.M. Bowman. - In: NATURE COMPUTATIONAL SCIENCE. - ISSN 2662-8457. - (2025), pp. 3887.1-3887.12. [Epub ahead of print] [10.1038/s43588-025-00790-0]

Extending atomic decomposition and many-body representation with a chemistry-motivated approach to machine learning potentials

R. Conte;
2025

Abstract

Most widely used machine learning potentials for condensed-phase applications rely on many-body permutationally invariant polynomial or atom-centered neural networks. However, these approaches face challenges in achieving chemical interpretability in atomistic energy decomposition and fully matching the computational efficiency of traditional force fields. Here we present a method that combines aspects of both approaches and balances accuracy and force-field-level speed. This method utilizes a monomer-centered representation, where the potential energy is decomposed into the sum of chemically meaningful monomeric energies. The structural descriptors of monomers are described by one-body and two-body effective interactions, enforced by appropriate sets of permutationally invariant polynomials as inputs to the feed-forward neural networks. Systematic assessments of models for gas-phase water trimer, liquid water, methane–water cluster and liquid carbon dioxide are performed. The improved accuracy, efficiency and flexibility of this method have promise for constructing accurate machine learning potentials and enabling large-scale quantum and classical simulations for complex molecular systems.
English
Settore CHEM-02/A - Chimica fisica
Settore PHYS-04/A - Fisica teorica della materia, modelli, metodi matematici e applicazioni
Articolo
Esperti anonimi
Pubblicazione scientifica
   Piano di Sostegno alla Ricerca 2015-2017 - Linea 2 "Dotazione annuale per attività istituzionali" (anno 2022)
   UNIVERSITA' DEGLI STUDI DI MILANO
2025
14-apr-2025
Springer Nature Publishing Group
3887
1
12
12
Epub ahead of print
Periodico con rilevanza internazionale
crossref
Aderisco
info:eu-repo/semantics/article
Extending atomic decomposition and many-body representation with a chemistry-motivated approach to machine learning potentials / Q. Yu, R. Ma, C. Qu, R. Conte, A. Nandi, P. Pandey, P.L. Houston, D.H. Zhang, J.M. Bowman. - In: NATURE COMPUTATIONAL SCIENCE. - ISSN 2662-8457. - (2025), pp. 3887.1-3887.12. [Epub ahead of print] [10.1038/s43588-025-00790-0]
mixed
Prodotti della ricerca::01 - Articolo su periodico
9
262
Article (author)
Periodico senza Impact Factor
Q. Yu, R. Ma, C. Qu, R. Conte, A. Nandi, P. Pandey, P.L. Houston, D.H. Zhang, J.M. Bowman
File in questo prodotto:
File Dimensione Formato  
Nature_Comput_Sci.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.6 MB
Formato Adobe PDF
1.6 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
MB_PIPNet_revision.pdf

embargo fino al 14/04/2026

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 3.43 MB
Formato Adobe PDF
3.43 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1160842
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact