The complexes of helium and neon with gaseous neutral molecules are generally perceived to be van der Waals adducts held together by physical (non-covalent) forces, owing to the combination of size (exchange) repulsion with dispersion/induction attraction. Molecular beam experiments confirm that this is the case for He-CF4, Ne-CF4 adducts, but revealed that the interaction of He and Ne with CCl4 features an appreciable contribution of chemical components that arise from the anisotropy of the electron density of CCl4 that enhances a charge transfer from Ng (Ng=He, Ne). These findings furnish a novel assay of the bonding capabilities of helium and neon, and invite to revisit the neutral complexes of these elements as systems of chemical relevance. The CCl4-Ng are also peculiar examples of halogen bonds, a group of interactions of major current concern. Finally, this investigation is a prelude to the development of semi-empirical models for force fields aimed to the unified description of static and dynamical properties of systems of comparable or higher complexity.

Experimental Evidence of Chemical Components in the Bonding of Helium and Neon with Neutral Molecules / D. Cappelletti, A. Bartocci, F. Grandinetti, S. Falcinelli, L. Belpassi, F. Tarantelli, F. Pirani. - In: CHEMISTRY. - ISSN 1521-3765. - 21:16(2015), pp. 6234-6240. [10.1002/chem.201406103]

Experimental Evidence of Chemical Components in the Bonding of Helium and Neon with Neutral Molecules

A. Bartocci
Secondo
;
2015

Abstract

The complexes of helium and neon with gaseous neutral molecules are generally perceived to be van der Waals adducts held together by physical (non-covalent) forces, owing to the combination of size (exchange) repulsion with dispersion/induction attraction. Molecular beam experiments confirm that this is the case for He-CF4, Ne-CF4 adducts, but revealed that the interaction of He and Ne with CCl4 features an appreciable contribution of chemical components that arise from the anisotropy of the electron density of CCl4 that enhances a charge transfer from Ng (Ng=He, Ne). These findings furnish a novel assay of the bonding capabilities of helium and neon, and invite to revisit the neutral complexes of these elements as systems of chemical relevance. The CCl4-Ng are also peculiar examples of halogen bonds, a group of interactions of major current concern. Finally, this investigation is a prelude to the development of semi-empirical models for force fields aimed to the unified description of static and dynamical properties of systems of comparable or higher complexity.
ab initio calculations; charge transfer; halogen bonds; helium; molecular beam scattering;
Settore CHEM-02/A - Chimica fisica
Settore CHEM-03/A - Chimica generale e inorganica
Settore PHYS-03/A - Fisica sperimentale della materia e applicazioni
Settore PHYS-04/A - Fisica teorica della materia, modelli, metodi matematici e applicazioni
2015
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1160737
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 50
  • ???jsp.display-item.citation.isi??? 50
  • OpenAlex ND
social impact