Ultralight axionlike particles (ALPs) can be a viable solution to the dark matter problem. The scalar field associated with ALPs, coupled to the electromagnetic field acts as an active birefringent medium, altering the polarization properties of light through which it propagates. In particular, oscillations of the axionic field induce monochromatic variations of the plane of linearly polarized radiation of astrophysical signals. The radio emission of millisecond pulsars provides an excellent tool to search for such manifestations, given their high fractional linear polarization and negligible fluctuations of their polarization properties. We have searched for evidence of ALPs in polarimetry measurements of pulsars collected and preprocessed for the European Pulsar Timing Array (EPTA) campaign. Focusing on the twelve brightest sources in linear polarization, we searched for an astrophysical signal from axions using both frequentist and Bayesian statistical frameworks. For the frequentist analysis, which uses Lomb-Scargle periodograms at its core, no statistically significant signal has been found. The model used for the Bayesian analysis has been adjusted to accommodate multiple deterministic systematics that may be present in the data. A statistically significant signal has been found in the dataset of multiple pulsars with common frequencies between 10-8 and 2×10-8 Hz, which can most likely be explained by the residual Faraday rotation in the terrestrial ionosphere. Strong bounds on the coupling constant gaγ, in the same ballpark as other searches, have been obtained in the mass range between 6×10-24 and 5×10-21 eV. We conclude by discussing the problems that can limit the sensitivity of our search for ultralight axions in the polarimetry data of pulsars, and possible ways to resolve them.

Searches for signatures of ultralight axion dark matter in polarimetry data of the European Pulsar Timing Array / N.K. Porayko, P. Usynina, J. Terol-Calvo, J. Martin Camalich, G.M. Shaifullah, A. Castillo, D. Blas, L. Guillemot, M. Peel, C. Tiburzi, K. Postnov, M. Kramer, J. Antoniadis, S. Babak, A.-. Bak Nielsen, E. Barausse, C.G. Bassa, C. Blanchard, M. Bonetti, E. Bortolas, P.R. Brook, M. Burgay, R.N. Caballero, A. Chalumeau, D.J. Champion, S. Chanlaridis, S. Chen, I. Cognard, G. Desvignes, M. Falxa, R.D. Ferdman, A. Franchini, J.R. Gair, A. Golden, B. Goncharov, E. Graikou, J.-. Griessmeier, Y.J. Guo, H. Hu, F. Iraci, D. Izquierdo-Villalba, J. Jang, J. Jawor, G.H. Janssen, A. Jessner, R. Karuppusamy, E.F. Keane, M.J. Keith, M.A. Krishnakumar, K. Lackeos, K.J. Lee, K. Liu, Y. Liu, A.G. Lyne, J.W. Mckee, R.A. Main, M.B. Mickaliger, I.C. Nitu, A. Parthasarathy, B.B.P. Perera, D. Perrodin, A. Petiteau, A. Possenti, H. Quelquejay Leclere, A. Samajdar, S.A. Sanidas, A. Sesana, L. Speri, R. Spiewak, B.W. Stappers, S.C. Susarla, G. Theureau, E. Van Der Wateren, A. Vecchio, V. Venkatraman Krishnan, J. Wang, L. Wang, Z. Wu. - In: PHYSICAL REVIEW D. - ISSN 2470-0029. - 111:6(2025 Mar 17), pp. 062005.1-062005.22. [10.1103/PhysRevD.111.062005]

Searches for signatures of ultralight axion dark matter in polarimetry data of the European Pulsar Timing Array

A. Franchini;
2025

Abstract

Ultralight axionlike particles (ALPs) can be a viable solution to the dark matter problem. The scalar field associated with ALPs, coupled to the electromagnetic field acts as an active birefringent medium, altering the polarization properties of light through which it propagates. In particular, oscillations of the axionic field induce monochromatic variations of the plane of linearly polarized radiation of astrophysical signals. The radio emission of millisecond pulsars provides an excellent tool to search for such manifestations, given their high fractional linear polarization and negligible fluctuations of their polarization properties. We have searched for evidence of ALPs in polarimetry measurements of pulsars collected and preprocessed for the European Pulsar Timing Array (EPTA) campaign. Focusing on the twelve brightest sources in linear polarization, we searched for an astrophysical signal from axions using both frequentist and Bayesian statistical frameworks. For the frequentist analysis, which uses Lomb-Scargle periodograms at its core, no statistically significant signal has been found. The model used for the Bayesian analysis has been adjusted to accommodate multiple deterministic systematics that may be present in the data. A statistically significant signal has been found in the dataset of multiple pulsars with common frequencies between 10-8 and 2×10-8 Hz, which can most likely be explained by the residual Faraday rotation in the terrestrial ionosphere. Strong bounds on the coupling constant gaγ, in the same ballpark as other searches, have been obtained in the mass range between 6×10-24 and 5×10-21 eV. We conclude by discussing the problems that can limit the sensitivity of our search for ultralight axions in the polarimetry data of pulsars, and possible ways to resolve them.
Settore PHYS-05/A - Astrofisica, cosmologia e scienza dello spazio
   Unravelling the Dark Universe from the Canary Islands Observatories
   UNDARK
   European Commission
   Horizon Europe Framework Programme
   101159929

   ARGOS Conceptual Design Study: Designing a next-generation radio facility for multi-messenger astronomy
   ARGOS-CDS
   European Commission
   Horizon Europe Framework Programme
   101094354

   DRAGNET: A high-speed, wide-angle camera for catching extreme astrophysical events
   DRAGNET
   European Commission
   SEVENTH FRAMEWORK PROGRAMME
   337062

   Imaging the Event Horizon of Black Holes
   BLACKHOLECAM
   European Commission
   SEVENTH FRAMEWORK PROGRAMME
   610058

   A Gamma-ray Infrastructure to Advance Gravitational Wave Astrophysics
   GIGA
   European Commission
   Horizon Europe Framework Programme
   101116134

   Binary massive black hole astrophysics
   B Massive
   European Commission
   Horizon 2020 Framework Programme
   818691

   Integrated Activities for the High Energy Astrophysics Domain
   AHEAD2020
   European Commission
   Horizon 2020 Framework Programme
   871158
17-mar-2025
Article (author)
File in questo prodotto:
File Dimensione Formato  
Porayko2025.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 6.15 MB
Formato Adobe PDF
6.15 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1160039
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact