We search for a stochastic gravitational wave background (SGWB) generated by a network of cosmic strings using six millisecond pulsars from Data Release 2 (DR2) of the European Pulsar Timing Array (EPTA). We perform a Bayesian analysis considering two models for the network of cosmic string loops, and compare it to a simple power-law model which is expected from the population of supermassive black hole binaries. Our main strong assumption is that the previously reported common red noise process is a SGWB. We find that the one-parameter cosmic string model is slightly favored over a power-law model thanks to its simplicity. If we assume a two-component stochastic signal in the data (supermassive black hole binary population and the signal from cosmic strings), we get a 95% upper limit on the string tension of log10(Gμ)<-9.9 (-10.5) for the two cosmic string models we consider. In extended two-parameter string models, we were unable to constrain the number of kinks. We test two approximate and fast Bayesian data analysis methods against the most rigorous analysis and find consistent results. These two fast and efficient methods are applicable to all SGWBs, independent of their source, and will be crucial for analysis of extended datasets.
Practical approaches to analyzing PTA data: Cosmic strings with six pulsars / H.Q. Leclere, P. Auclair, S. Babak, A. Chalumeau, D.A. Steer, J. Antoniadis, A.-.B. Nielsen, C.G. Bassa, A. Berthereau, M. Bonetti, E. Bortolas, P.R. Brook, M. Burgay, R.N. Caballero, D.J. Champion, S. Chanlaridis, S. Chen, I. Cognard, G. Desvignes, M. Falxa, R.D. Ferdman, A. Franchini, J.R. Gair, B. Goncharov, E. Graikou, J.-. Grie(\ss)meier, L. Guillemot, Y.J. Guo, H. Hu, F. Iraci, D. Izquierdo-Villalba, J. Jang, J. Jawor, G.H. Janssen, A. Jessner, R. Karuppusamy, E.F. Keane, M.J. Keith, M. Kramer, M.A. Krishnakumar, K. Lackeos, K.J. Lee, K. Liu, Y. Liu, A.G. Lyne, J.W. Mckee, R.A. Main, M.B. Mickaliger, I.C. Nit, A. Parthasarathy, B.B.P. Perera, D. Perrodin, A. Petiteau, N.K. Porayko, A. Possenti, A. Samajdar, S.A. Sanidas, A. Sesana, G. Shaifullah, L. Speri, R. Spiewak, B.W. Stappers, S.C. Susarla, G. Theureau, C. Tiburzi, E. van der Wateren, A. Vecchio, V.V. Krishnan, J.P.W. Verbiest, J. Wang, L. Wang, Z. Wu. - In: PHYSICAL REVIEW D. - ISSN 2470-0010. - 108:12(2023 Dec 15), pp. 123527.1-123527.14. [10.1103/PhysRevD.108.123527]
Practical approaches to analyzing PTA data: Cosmic strings with six pulsars
A. Franchini;
2023
Abstract
We search for a stochastic gravitational wave background (SGWB) generated by a network of cosmic strings using six millisecond pulsars from Data Release 2 (DR2) of the European Pulsar Timing Array (EPTA). We perform a Bayesian analysis considering two models for the network of cosmic string loops, and compare it to a simple power-law model which is expected from the population of supermassive black hole binaries. Our main strong assumption is that the previously reported common red noise process is a SGWB. We find that the one-parameter cosmic string model is slightly favored over a power-law model thanks to its simplicity. If we assume a two-component stochastic signal in the data (supermassive black hole binary population and the signal from cosmic strings), we get a 95% upper limit on the string tension of log10(Gμ)<-9.9 (-10.5) for the two cosmic string models we consider. In extended two-parameter string models, we were unable to constrain the number of kinks. We test two approximate and fast Bayesian data analysis methods against the most rigorous analysis and find consistent results. These two fast and efficient methods are applicable to all SGWBs, independent of their source, and will be crucial for analysis of extended datasets.| File | Dimensione | Formato | |
|---|---|---|---|
|
sixpulsars.pdf
accesso aperto
Tipologia:
Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione
927.03 kB
Formato
Adobe PDF
|
927.03 kB | Adobe PDF | Visualizza/Apri |
|
PhysRevD.108.123527.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
808.56 kB
Formato
Adobe PDF
|
808.56 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




