Spins play a crucial role in the appearance, evolution, and occupation fraction of massive black holes (MBHs). To date, observational estimates of MBH spins are scarce, and the assumptions commonly made in such estimates have recently been questioned. Similarly, theoretical models for MBH spin evolution, while reproducing the few observational constraints, are based on possibly oversimplified assumptions. New independent constraints on MBH spins are therefore of primary importance. We present a rigorous statistical analysis of the relative orientation of radio jets and megamaser disks in ten low-redshift galaxies. We find a strong preference for (partial) alignment between jets and megamaser that can be attributed to two different causes: coherent accretion and selective accretion. In the first case the partial alignment is due to an anisotropy in the gas reservoir fueling the growth of MBHs. In the second case the spin-dependent anisotropic feedback allows long-lived accretion only if the orbits of the gas inflows are almost aligned to the MBH equatorial plane. A discussion of the implications of the two accretion scenarios regarding the evolution of MBHs is presented, together with an outlook on future observational tests aiming at discriminating between the two scenarios and checking whether either applies to different redshifts and black hole mass regimes.

Partial alignment between jets and megamasers: Coherent versus selective accretion / M. Dotti, R. Buscicchio, F. Bollati, R. Decarli, W. Del Pozzo, A. Franchini. - In: ASTRONOMY & ASTROPHYSICS. - ISSN 0004-6361. - 692:(2024), pp. A233.1-A233.17. [10.1051/0004-6361/202450112]

Partial alignment between jets and megamasers: Coherent versus selective accretion

A. Franchini
Ultimo
2024

Abstract

Spins play a crucial role in the appearance, evolution, and occupation fraction of massive black holes (MBHs). To date, observational estimates of MBH spins are scarce, and the assumptions commonly made in such estimates have recently been questioned. Similarly, theoretical models for MBH spin evolution, while reproducing the few observational constraints, are based on possibly oversimplified assumptions. New independent constraints on MBH spins are therefore of primary importance. We present a rigorous statistical analysis of the relative orientation of radio jets and megamaser disks in ten low-redshift galaxies. We find a strong preference for (partial) alignment between jets and megamaser that can be attributed to two different causes: coherent accretion and selective accretion. In the first case the partial alignment is due to an anisotropy in the gas reservoir fueling the growth of MBHs. In the second case the spin-dependent anisotropic feedback allows long-lived accretion only if the orbits of the gas inflows are almost aligned to the MBH equatorial plane. A discussion of the implications of the two accretion scenarios regarding the evolution of MBHs is presented, together with an outlook on future observational tests aiming at discriminating between the two scenarios and checking whether either applies to different redshifts and black hole mass regimes.
accretion, accretion disks; black hole physics; methods: statistical; quasars: supermassive black holes;
Settore PHYS-05/A - Astrofisica, cosmologia e scienza dello spazio
   GW-Learn: Deciphering the Gravitation-Wave Universe using the Next-Generation Observatories and Machine Learning
   Swiss National Science Foundation
   Programmes
   213497
2024
17-dic-2024
Article (author)
File in questo prodotto:
File Dimensione Formato  
Dotti2024.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 2.64 MB
Formato Adobe PDF
2.64 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1159998
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact