We investigate the formation mechanism for the observed nearly polar aligned (perpendicular to the binary orbital plane) debris ring around the eccentric orbit binary 99 Herculis. An initially inclined non-polar debris ring or disc will not remain flat and will not evolve to a polar configuration, due to the effects of differential nodal precession that alter its flat structure. However, a gas disc with embedded well coupled solids around the eccentric binary may evolve to a polar configuration as a result of pressure forces that maintain the disc flatness and as a result of viscous dissipation that allows the disc to increase its tilt. Once the gas disc disperses, the debris disc is in a polar aligned state in which there is little precession. We use three-dimensional hydrodynamical simulations, linear theory, and particle dynamics to study the evolution of a misaligned circumbinary gas disc and explore the effects of the initial disc tilt, mass, and size. We find that for a wide range of parameter space, the polar alignment time-scale is shorter than the lifetime of the gas disc. Using the observed level of alignment of 3◦ from polar, we place an upper limit on the mass of the gas disc of about 0.014 M☉ at the time of gas dispersal. We conclude that the polar debris disc around 99 Her can be explained as the result of an initially moderately inclined gas disc with embedded solids. Such a disc may provide an environment for the formation of polar planets.

Formation of the polar debris disc around 99 Herculis / J.L. Smallwood, A. Franchini, C. Chen, E. Becerril, S.H. Lubow, C.-. Yang, R.G. Martin. - In: MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY. - ISSN 0035-8711. - 494:1(2020 May 13), pp. 487-499. [10.1093/mnras/staa654]

Formation of the polar debris disc around 99 Herculis

A. Franchini
Secondo
;
2020

Abstract

We investigate the formation mechanism for the observed nearly polar aligned (perpendicular to the binary orbital plane) debris ring around the eccentric orbit binary 99 Herculis. An initially inclined non-polar debris ring or disc will not remain flat and will not evolve to a polar configuration, due to the effects of differential nodal precession that alter its flat structure. However, a gas disc with embedded well coupled solids around the eccentric binary may evolve to a polar configuration as a result of pressure forces that maintain the disc flatness and as a result of viscous dissipation that allows the disc to increase its tilt. Once the gas disc disperses, the debris disc is in a polar aligned state in which there is little precession. We use three-dimensional hydrodynamical simulations, linear theory, and particle dynamics to study the evolution of a misaligned circumbinary gas disc and explore the effects of the initial disc tilt, mass, and size. We find that for a wide range of parameter space, the polar alignment time-scale is shorter than the lifetime of the gas disc. Using the observed level of alignment of 3◦ from polar, we place an upper limit on the mass of the gas disc of about 0.014 M☉ at the time of gas dispersal. We conclude that the polar debris disc around 99 Her can be explained as the result of an initially moderately inclined gas disc with embedded solids. Such a disc may provide an environment for the formation of polar planets.
Accretion; Accretion discs; Binaries: general; Hydrodynamics; Planets and satellites: formation;
Settore PHYS-05/A - Astrofisica, cosmologia e scienza dello spazio
13-mag-2020
Article (author)
File in questo prodotto:
File Dimensione Formato  
Smallwood2020.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.75 MB
Formato Adobe PDF
1.75 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2003.01781v1.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 1.02 MB
Formato Adobe PDF
1.02 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1159981
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 32
  • OpenAlex ND
social impact