We address definability questions in propositional intuitionistic logic via an embedding of the opposite of the category of finitely presented Heyting algebras into a suitable sheaf topos. The closure properties of such an embedding are established by combinatorial arguments relying on Ehrenfeucht-Fraissé games. Applications are given to model-completability, fixpoints definability, projectivity, and unification theory.
Investigating Definability in Propositional Logic via Sheaves on Grothendieck Topologies / S. Ghilardi (CHAPMAN MATHEMATICAL NOTES). - In: The Mathematical and Philosophical Legacy of Alexander Grothendieck / [a cura di] M. Panza, D.C. Struppa, J.-J. Szczeciniarz. - [s.l] : Birkhauser, 2025. - ISBN 978-3-031-68933-8. - pp. 433-452 [10.1007/978-3-031-68934-5_16]
Investigating Definability in Propositional Logic via Sheaves on Grothendieck Topologies
S. Ghilardi
2025
Abstract
We address definability questions in propositional intuitionistic logic via an embedding of the opposite of the category of finitely presented Heyting algebras into a suitable sheaf topos. The closure properties of such an embedding are established by combinatorial arguments relying on Ehrenfeucht-Fraissé games. Applications are given to model-completability, fixpoints definability, projectivity, and unification theory.| File | Dimensione | Formato | |
|---|---|---|---|
|
Silvio_chapter.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
410.07 kB
Formato
Adobe PDF
|
410.07 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




