Purpose: Takotsubo cardiomyopathy (TTC) is a transient but severe acute myocardial dysfunction with a wide range of outcomes from favorable to life-threatening. The current risk stratification scores of TTC patients do not include cardiac magnetic resonance (CMR) parameters. To date, it is still unknown whether and how clinical, trans-thoracic echocardiography (TTE), and CMR data can be integrated to improve risk stratification. Methods: EVOLUTION (Exploring the eVolution in prognOstic capabiLity of mUlti-sequence cardiac magneTIc resOnance in patieNts affected by Takotsubo cardiomyopathy) is a multicenter, international registry of TTC patients who will undergo a clinical, TTE, and CMR evaluation. Clinical data including demographics, risk factors, comorbidities, laboratory values, ECG, and results from TTE and CMR analysis will be collected, and each patient will be followed-up for in-hospital and long-term outcomes. Clinical outcome measures during hospitalization will include cardiovascular death, pulmonary edema, arrhythmias, stroke, or transient ischemic attack. Clinical long-term outcome measures will include cardiovascular death, pulmonary edema, heart failure, arrhythmias, sudden cardiac death, and major adverse cardiac and cerebrovascular events defined as a composite endpoint of death from any cause, myocardial infarction, recurrence of TTC, transient ischemic attack, and stroke. We will develop a comprehensive clinical and imaging score that predicts TTC outcomes and test the value of machine learning models, incorporating clinical and imaging parameters to predict prognosis. Conclusions: The main goal of the study is to develop a comprehensive clinical and imaging score, that includes TTE and CMR data, in a large cohort of TTC patients for risk stratification and outcome prediction as a basis for possible changes in patient management.
Exploring the EVolution in PrognOstic CapabiLity of MUltisequence Cardiac MagneTIc ResOnance in PatieNts Affected by Takotsubo Cardiomyopathy Based on Machine Learning Analysis: Design and Rationale of the EVOLUTION Study / R. Cau, G. Muscogiuri, F. Pisu, M. Gatti, B. Velthuis, C. Loewe, F. Cademartiri, G. Pontone, R. Montisci, M. Guglielmo, S. Sironi, A. Esposito, M. Francone, N. Dacher, C. Peebles, G. Bastarrika, R. Salgado, L. Saba. - In: JOURNAL OF THORACIC IMAGING. - ISSN 1536-0237. - 38:6(2023 Nov), pp. 391-398. [10.1097/RTI.0000000000000709]
Exploring the EVolution in PrognOstic CapabiLity of MUltisequence Cardiac MagneTIc ResOnance in PatieNts Affected by Takotsubo Cardiomyopathy Based on Machine Learning Analysis: Design and Rationale of the EVOLUTION Study
M. Gatti;G. Pontone;A. Esposito;
2023
Abstract
Purpose: Takotsubo cardiomyopathy (TTC) is a transient but severe acute myocardial dysfunction with a wide range of outcomes from favorable to life-threatening. The current risk stratification scores of TTC patients do not include cardiac magnetic resonance (CMR) parameters. To date, it is still unknown whether and how clinical, trans-thoracic echocardiography (TTE), and CMR data can be integrated to improve risk stratification. Methods: EVOLUTION (Exploring the eVolution in prognOstic capabiLity of mUlti-sequence cardiac magneTIc resOnance in patieNts affected by Takotsubo cardiomyopathy) is a multicenter, international registry of TTC patients who will undergo a clinical, TTE, and CMR evaluation. Clinical data including demographics, risk factors, comorbidities, laboratory values, ECG, and results from TTE and CMR analysis will be collected, and each patient will be followed-up for in-hospital and long-term outcomes. Clinical outcome measures during hospitalization will include cardiovascular death, pulmonary edema, arrhythmias, stroke, or transient ischemic attack. Clinical long-term outcome measures will include cardiovascular death, pulmonary edema, heart failure, arrhythmias, sudden cardiac death, and major adverse cardiac and cerebrovascular events defined as a composite endpoint of death from any cause, myocardial infarction, recurrence of TTC, transient ischemic attack, and stroke. We will develop a comprehensive clinical and imaging score that predicts TTC outcomes and test the value of machine learning models, incorporating clinical and imaging parameters to predict prognosis. Conclusions: The main goal of the study is to develop a comprehensive clinical and imaging score, that includes TTE and CMR data, in a large cohort of TTC patients for risk stratification and outcome prediction as a basis for possible changes in patient management.| File | Dimensione | Formato | |
|---|---|---|---|
|
exploring_the_evolution_in_prognostic_capability.8.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
289.05 kB
Formato
Adobe PDF
|
289.05 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




