We introduce the notion of a distributive law between a relative monad and a monad. We call this a relative distributive law and define it in any 2-category K. In order to do that, we introduce the 2-category of relative monads in a 2-category K with relative monad morphisms and relative monad transformations as 1-and 2-cells, respectively. We relate our definition to the 2-category of monads in K defined by Street. Using this perspective, we prove two Beck type theorems regarding relative distributive laws. We also describe what does it mean to have Eilenberg-Moore and Kleisli objects in this context and give examples in the 2-category of locally small categories.

Distributive Laws for Relative Monads / G. Lobbia. - In: APPLIED CATEGORICAL STRUCTURES. - ISSN 0927-2852. - 31:2(2023), pp. 19.1-19.38. [10.1007/s10485-023-09716-1]

Distributive Laws for Relative Monads

G. Lobbia
2023

Abstract

We introduce the notion of a distributive law between a relative monad and a monad. We call this a relative distributive law and define it in any 2-category K. In order to do that, we introduce the 2-category of relative monads in a 2-category K with relative monad morphisms and relative monad transformations as 1-and 2-cells, respectively. We relate our definition to the 2-category of monads in K defined by Street. Using this perspective, we prove two Beck type theorems regarding relative distributive laws. We also describe what does it mean to have Eilenberg-Moore and Kleisli objects in this context and give examples in the 2-category of locally small categories.
Relative monads; Distributive laws; 2-categories;
Settore MATH-01/A - Logica matematica
Settore MATH-02/A - Algebra
2023
5-apr-2023
Article (author)
File in questo prodotto:
File Dimensione Formato  
Distributive Laws for Relative Monads_G. Lobbia.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 390.9 kB
Formato Adobe PDF
390.9 kB Adobe PDF Visualizza/Apri
s10485-023-09716-1.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 535.45 kB
Formato Adobe PDF
535.45 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1159125
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact