This paper establishes new connections between many-body quantum systems, One-body Reduced Density Matrices Functional Theory (1RDMFT) and Optimal Transport (OT), by interpreting the problem of computing the ground-state energy of a finite-dimensional composite quantum system at positive temperature as a non-commutative entropy regularized Optimal Transport problem. We develop a new approach to fully characterize the dual-primal solutions in such non-commutative setting. The mathematical formalism is particularly relevant in quantum chemistry: numerical realizations of the many-electron ground-state energy can be computed via a non-commutative version of Sinkhorn algorithm. Our approach allows to prove convergence and robustness of this algorithm, which, to our best knowledge, were unknown even in the two marginal case. Our methods are based on a priori estimates in the dual problem, which we believe to be of independent interest. Finally, the above results are extended in 1RDMFT setting, where bosonic or fermionic symmetry conditions are enforced on the problem.
A Non-Commutative Entropic Optimal Transport Approach to Quantum Composite Systems at Positive Temperature / D. Feliciangeli, A. Gerolin, L. Portinale. - In: JOURNAL OF FUNCTIONAL ANALYSIS. - ISSN 0022-1236. - 285:4(2023), pp. 109963.1-109963.39. [10.1016/j.jfa.2023.109963]
A Non-Commutative Entropic Optimal Transport Approach to Quantum Composite Systems at Positive Temperature
L. PortinaleUltimo
2023
Abstract
This paper establishes new connections between many-body quantum systems, One-body Reduced Density Matrices Functional Theory (1RDMFT) and Optimal Transport (OT), by interpreting the problem of computing the ground-state energy of a finite-dimensional composite quantum system at positive temperature as a non-commutative entropy regularized Optimal Transport problem. We develop a new approach to fully characterize the dual-primal solutions in such non-commutative setting. The mathematical formalism is particularly relevant in quantum chemistry: numerical realizations of the many-electron ground-state energy can be computed via a non-commutative version of Sinkhorn algorithm. Our approach allows to prove convergence and robustness of this algorithm, which, to our best knowledge, were unknown even in the two marginal case. Our methods are based on a priori estimates in the dual problem, which we believe to be of independent interest. Finally, the above results are extended in 1RDMFT setting, where bosonic or fermionic symmetry conditions are enforced on the problem.| File | Dimensione | Formato | |
|---|---|---|---|
|
jfa_1-s2.0-S0022123623001209-main.pdf
accesso riservato
Descrizione: Pubblicazione
Tipologia:
Publisher's version/PDF
Licenza:
Nessuna licenza
Dimensione
664.45 kB
Formato
Adobe PDF
|
664.45 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




