We consider an optimal control problem for an abstract nonlinear dissipative evolution equation. The differential constraint is penalized by augmenting the target functional by a nonnegative global-in-time functional which is null-minimized in the evolution equation is satisfied. Different variational settings are presented, leading to the convergence of the penalization method for gradient flows, noncyclic and semimonotone flows, doubly nonlinear evolutions, and GENERIC systems.

Penalization via global functionals of optimal-control problems for dissipative evolution / L. Portinale, U. Stefanelli. - In: ADVANCES IN MATHEMATICAL SCIENCES AND APPLICATIONS. - ISSN 1343-4373. - 28:2(2019), pp. 425-447.

Penalization via global functionals of optimal-control problems for dissipative evolution

L. Portinale
Primo
;
2019

Abstract

We consider an optimal control problem for an abstract nonlinear dissipative evolution equation. The differential constraint is penalized by augmenting the target functional by a nonnegative global-in-time functional which is null-minimized in the evolution equation is satisfied. Different variational settings are presented, leading to the convergence of the penalization method for gradient flows, noncyclic and semimonotone flows, doubly nonlinear evolutions, and GENERIC systems.
Optimal control; dissipative evolution; penalization; global variational method;
Settore MATH-03/A - Analisi matematica
2019
Article (author)
File in questo prodotto:
File Dimensione Formato  
Portinale_Stefanelli.pdf

accesso riservato

Descrizione: Pubblicazione
Tipologia: Publisher's version/PDF
Dimensione 274.16 kB
Formato Adobe PDF
274.16 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1158803
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact