The curvature dimension condition CD(K,N), pioneered by Sturm and Lott–Villani in Sturm (2006a); Sturm (2006b); Lott and Villani (2009), is a synthetic notion of having curvature bounded below and dimension bounded above, in the non-smooth setting. This condition implies a suitable generalization of the Brunn–Minkowski inequality, denoted BM(K,N). In this paper, we address the converse implication in the setting of weighted Riemannian manifolds, proving that BM(K,N) is in fact equivalent to CD(K,N). Our result allows to characterize the curvature dimension condition without using neither the optimal transport nor the differential structure of the manifold.

The Brunn–Minkowski inequality implies the CD condition in weighted Riemannian manifolds / M. Magnabosco, L. Portinale, T. Rossi. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 242:(2024 May), pp. 113502.1-113502.13. [10.1016/j.na.2024.113502]

The Brunn–Minkowski inequality implies the CD condition in weighted Riemannian manifolds

L. Portinale
Secondo
;
2024

Abstract

The curvature dimension condition CD(K,N), pioneered by Sturm and Lott–Villani in Sturm (2006a); Sturm (2006b); Lott and Villani (2009), is a synthetic notion of having curvature bounded below and dimension bounded above, in the non-smooth setting. This condition implies a suitable generalization of the Brunn–Minkowski inequality, denoted BM(K,N). In this paper, we address the converse implication in the setting of weighted Riemannian manifolds, proving that BM(K,N) is in fact equivalent to CD(K,N). Our result allows to characterize the curvature dimension condition without using neither the optimal transport nor the differential structure of the manifold.
Brunn–Minkowski inequality; Curvature-dimension bounds; Ricci curvature
Settore MATH-03/A - Analisi matematica
mag-2024
Article (author)
File in questo prodotto:
File Dimensione Formato  
wBM_1-s2.0-S0362546X2400021X-main.pdf

accesso aperto

Descrizione: Pubblicazione
Tipologia: Publisher's version/PDF
Dimensione 624.01 kB
Formato Adobe PDF
624.01 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1158798
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact