In this paper, we discuss two topics: first, we show how to convert 1+1-topological quantum field theories valued in symmetric bimonoidal categories into stable homotopical data, using a machinery by Elmendorf and Mandell. Then, we discuss, in this framework, two recent results (independent of each other) on refinements of Khovanov homology: our refinement into a module over the connective k-theory spectrum and a stronger result by Lipshitz and Sarkar refining Khovanov homology into a stable homotopy type.

Field theories, stable homotopy theory and Khovanov homology / P. Hu, D. Kriz, I. Kriz. - In: TOPOLOGY PROCEEDINGS. - ISSN 0146-4124. - 48:(2016), pp. 327-360.

Field theories, stable homotopy theory and Khovanov homology

D. Kriz
;
2016

Abstract

In this paper, we discuss two topics: first, we show how to convert 1+1-topological quantum field theories valued in symmetric bimonoidal categories into stable homotopical data, using a machinery by Elmendorf and Mandell. Then, we discuss, in this framework, two recent results (independent of each other) on refinements of Khovanov homology: our refinement into a module over the connective k-theory spectrum and a stronger result by Lipshitz and Sarkar refining Khovanov homology into a stable homotopy type.
Mathematics - Geometric Topology; Mathematics - Geometric Topology; Mathematics - Algebraic Topology; Mathematics - Quantum Algebra
Settore MATH-02/A - Algebra
2016
http://topology.nipissingu.ca/tp/reprints/v48/
Article (author)
File in questo prodotto:
File Dimensione Formato  
tp48023 (2).pdf

accesso aperto

Tipologia: Publisher's version/PDF
Licenza: Creative commons
Dimensione 754.23 kB
Formato Adobe PDF
754.23 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1158555
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact