We build a unified framework for the study of monodromy operators and weight filtrations of cohomology theories for varieties over a local field. As an application, we give a streamlined definition of Hyodo–Kato cohomology without recourse to log-geometry, as predicted by Fontaine, and we produce an induced Clemens–Schmid chain complex.

Motivic monodromy and $p$-adic cohomology theories / F. Binda, M. Gallauer, A. Vezzani. - In: JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY. - ISSN 1435-9855. - (2025), pp. 1-62. [Epub ahead of print] [10.4171/jems/1634]

Motivic monodromy and $p$-adic cohomology theories

F. Binda
Primo
;
A. Vezzani
Ultimo
2025

Abstract

We build a unified framework for the study of monodromy operators and weight filtrations of cohomology theories for varieties over a local field. As an application, we give a streamlined definition of Hyodo–Kato cohomology without recourse to log-geometry, as predicted by Fontaine, and we produce an induced Clemens–Schmid chain complex.
Settore MATH-02/A - Algebra
2025
Article (author)
File in questo prodotto:
File Dimensione Formato  
10.4171-jems-1634-online-first.pdf

accesso aperto

Descrizione: published version
Tipologia: Publisher's version/PDF
Dimensione 786.26 kB
Formato Adobe PDF
786.26 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1158162
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact