For certain elliptic curves E=Q with E(Q)[2] = Z=2Z, we prove a criterion for prime twists of E to have analytic rank 0 or 1, based on a mod 4 congruence of 2-adic logarithms of Heegner points. As an application, we prove new cases of Silverman's conjecture that there exists a positive proposition of prime twists of E of rank zero (resp. positive rank).

Prime twists of elliptic curves / D. Kriz, C. Li. - In: MATHEMATICAL RESEARCH LETTERS. - ISSN 1073-2780. - 26:4(2019), pp. 1187-1195. [10.4310/mrl.2019.v26.n4.a10]

Prime twists of elliptic curves

D. Kriz
Primo
;
2019

Abstract

For certain elliptic curves E=Q with E(Q)[2] = Z=2Z, we prove a criterion for prime twists of E to have analytic rank 0 or 1, based on a mod 4 congruence of 2-adic logarithms of Heegner points. As an application, we prove new cases of Silverman's conjecture that there exists a positive proposition of prime twists of E of rank zero (resp. positive rank).
Settore MATH-02/A - Algebra
2019
Article (author)
File in questo prodotto:
File Dimensione Formato  
Kriz_PrimeTwistsOfEllipticCurves.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Licenza: Nessuna licenza
Dimensione 251.92 kB
Formato Adobe PDF
251.92 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1157936
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact