It is shown numerically that the distribution of squared components of eigenvectors of the Anderson 1D tight binding equation on lattices of finite lengths, is parametrized by the single scaling parameter x= zeta infinity /N, where zeta infinity is the localization length for the infinite lattice and N is the number of sites of the finite lattice.
Scaling of distribution eigenvectors in a 1D Anderson model / L.G. Molinari. - In: JOURNAL OF PHYSICS. CONDENSED MATTER. - ISSN 0953-8984. - 5:23(1993), pp. 002.L319-002.L322. [10.1088/0953-8984/5/23/002]
Scaling of distribution eigenvectors in a 1D Anderson model
L.G. Molinari
1993
Abstract
It is shown numerically that the distribution of squared components of eigenvectors of the Anderson 1D tight binding equation on lattices of finite lengths, is parametrized by the single scaling parameter x= zeta infinity /N, where zeta infinity is the localization length for the infinite lattice and N is the number of sites of the finite lattice.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
JPCondMatt_5_L319.pdf
accesso riservato
Descrizione: versione pubblicata su rivista
Tipologia:
Publisher's version/PDF
Licenza:
Nessuna licenza
Dimensione
262.54 kB
Formato
Adobe PDF
|
262.54 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




