This paper investigates the effectiveness of GPT-4o-2024-08-06, one of the Large Language Models (LLM) from OpenAI, in detecting business process anomalies, with a focus on rework anomalies. In our study, we developed a GPT-4o-based tool capable of transforming event logs into a structured format and identifying reworked activities within business event logs. The analysis was performed on a synthetic dataset designed to contain rework anomalies but free of loops. To evaluate the anomaly detection capabilities of GPT 4o-2024-08-06, we used three prompting techniques: zero-shot, one-shot, and few-shot. These techniques were tested on different anomaly distributions, namely normal, uniform, and exponential, to identify the most effective approach for each case. The results demonstrate the strong performance of GPT-4o-2024-08-06. On our dataset, the model achieved 96.14% accuracy with one-shot prompting for the normal distribution, 97.94% accuracy with few-shot prompting for the uniform distribution, and 74.21% accuracy with few-shot prompting for the exponential distribution. These results highlight the model's potential as a reliable tool for detecting rework anomalies in event logs and how anomaly distribution and prompting strategy influence the model's performance.
Leveraging GPT-4o Efficiency for Detecting Rework Anomaly in Business Processes / M. Derakhshan, P. Ceravolo, F. Mohammadi. - (2025 Feb 10).
Leveraging GPT-4o Efficiency for Detecting Rework Anomaly in Business Processes
P. Ceravolo;F. Mohammadi
2025
Abstract
This paper investigates the effectiveness of GPT-4o-2024-08-06, one of the Large Language Models (LLM) from OpenAI, in detecting business process anomalies, with a focus on rework anomalies. In our study, we developed a GPT-4o-based tool capable of transforming event logs into a structured format and identifying reworked activities within business event logs. The analysis was performed on a synthetic dataset designed to contain rework anomalies but free of loops. To evaluate the anomaly detection capabilities of GPT 4o-2024-08-06, we used three prompting techniques: zero-shot, one-shot, and few-shot. These techniques were tested on different anomaly distributions, namely normal, uniform, and exponential, to identify the most effective approach for each case. The results demonstrate the strong performance of GPT-4o-2024-08-06. On our dataset, the model achieved 96.14% accuracy with one-shot prompting for the normal distribution, 97.94% accuracy with few-shot prompting for the uniform distribution, and 74.21% accuracy with few-shot prompting for the exponential distribution. These results highlight the model's potential as a reliable tool for detecting rework anomalies in event logs and how anomaly distribution and prompting strategy influence the model's performance.| File | Dimensione | Formato | |
|---|---|---|---|
|
2502.06918v1.pdf
accesso aperto
Tipologia:
Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione
465.22 kB
Formato
Adobe PDF
|
465.22 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




