The symmetric strict implication calculus S(2)ICis a modal calculus for compact Hausdorff spaces. This is established throughde Vries duality, linking compact Hausdorff spaces with de Vries algebras-complete Boolean algebras equipped with aspecial relation. Modal compact Hausdorff spaces are compact Hausdorff spaces enriched with a continuous relation. Thesespaces correspond, via modalized de Vries duality, to upper continuous modal de Vries algebras. In this paper, we introducethe modal symmetric strict implication calculus (MSIC)-I-2, which extends (SIC)-I-2. We prove that MS(2)ICis strongly sound andcomplete with respect to upper continuous modal de Vries algebras, thereby providing a logical calculus for modal compactHausdorff spaces. We also develop a relational semantics for MS(2)ICthat we employ to show admissibility of various Pi(2)-rules in this system

A calculus for modal compact Hausdorff spaces / N. Bezhanishvili, L. Carai, S. Ghilardi, Z. Zhao. - In: JOURNAL OF LOGIC AND COMPUTATION. - ISSN 0955-792X. - (2025), pp. exae086.1-exae086.30. [Epub ahead of print] [10.1093/logcom/exae086]

A calculus for modal compact Hausdorff spaces

L. Carai
;
S. Ghilardi;
2025

Abstract

The symmetric strict implication calculus S(2)ICis a modal calculus for compact Hausdorff spaces. This is established throughde Vries duality, linking compact Hausdorff spaces with de Vries algebras-complete Boolean algebras equipped with aspecial relation. Modal compact Hausdorff spaces are compact Hausdorff spaces enriched with a continuous relation. Thesespaces correspond, via modalized de Vries duality, to upper continuous modal de Vries algebras. In this paper, we introducethe modal symmetric strict implication calculus (MSIC)-I-2, which extends (SIC)-I-2. We prove that MS(2)ICis strongly sound andcomplete with respect to upper continuous modal de Vries algebras, thereby providing a logical calculus for modal compactHausdorff spaces. We also develop a relational semantics for MS(2)ICthat we employ to show admissibility of various Pi(2)-rules in this system
modal logic; compact Hausdorff space; continuous relation; de Vries algebra; strict implication; Pi_2-rule; admissible rule
Settore MATH-01/A - Logica matematica
   Modalities in Substructural Logics: Theory, Methods and Applications (MOSAIC)
   MOSAIC
   EUROPEAN COMMISSION
   H2020
   101007627
2025
5-feb-2025
Article (author)
File in questo prodotto:
File Dimensione Formato  
2402.00528v2.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 342.05 kB
Formato Adobe PDF
342.05 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1157015
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex 0
social impact