We present cosmological results from the measurement of baryon acoustic oscillations (BAO) in galaxy, quasar and Lyman-α forest tracers from the first year of observations from the Dark Energy Spectroscopic Instrument (DESI), to be released in the DESI Data Release 1. DESI BAO provide robust measurements of the transverse comoving distance and Hubble rate, or their combination, relative to the sound horizon, in seven redshift bins from over 6 million extragalactic objects in the redshift range 0.1 < z < 4.2. To mitigate confirmation bias, a blind analysis was implemented to measure the BAO scales. DESI BAO data alone are consistent with the standard flat ΛCDM cosmological model with a matter density Ωm=0.295±0.015. Paired with a baryon density prior from Big Bang Nucleosynthesis and the robustly measured acoustic angular scale from the cosmic microwave background (CMB), DESI requires H0=(68.52±0.62) km s-1 Mpc-1. In conjunction with CMB anisotropies from Planck and CMB lensing data from Planck and ACT, we find Ωm=0.307± 0.005 and H0=(67.97±0.38) km s-1 Mpc-1. Extending the baseline model with a constant dark energy equation of state parameter w, DESI BAO alone requirew=-0.99+0.15-0.13. In models with a time-varying dark energy equation of state parametrised by w0 and wa, combinations of DESI with CMB or with type Ia supernovae (SN Ia) individually prefer w0 > -1 and wa < 0. This preference is 2.6σ for the DESI+CMB combination, and persists or grows when SN Ia are added in, giving results discrepant with the ΛCDM model at the 2.5σ, 3.5σ or 3.9σ levels for the addition of the Pantheon+, Union3, or DES-SN5YR supernova datasets respectively. For the flat ΛCDM model with the sum of neutrino mass ∑ mν free, combining the DESI and CMB data yields an upper limit ∑ mν < 0.072 (0.113) eV at 95% confidence for a ∑ mν > 0 (∑ mν > 0.059) eV prior. These neutrino-mass constraints are substantially relaxed if the background dynamics are allowed to deviate from flat ΛCDM.
DESI 2024 VI: cosmological constraints from the measurements of baryon acoustic oscillations / A.G. Adame, J. Aguilar, S. Ahlen, S. Alam, D.M. Alexander, M. Alvarez, O. Alves, A. Anand, U. Andrade, E. Armengaud, S. Avila, A. Aviles, H. Awan, B. Bahr-Kalus, S. Bailey, C. Baltay, A. Bault, J. Behera, S. Benzvi, A. Bera, F. Beutler, D. Bianchi, C. Blake, R. Blum, S. Brieden, A. Brodzeller, D. Brooks, E. Buckley-Geer, E. Burtin, R. Calderon, R. Canning, A. Carnero Rosell, R. Cereskaite, J.L. Cervantes-Cota, S. Chabanier, E. Chaussidon, J. Chaves-Montero, S. Chen, X. Chen, T. Claybaugh, S. Cole, A. Cuceu, T.M. Davis, K. Dawson, A. de la Macorra, A. de Mattia, N. Deiosso, A. Dey, B. Dey, Z. Ding, P. Doel, J. Edelstein, S. Eftekharzadeh, D.J. Eisenstein, A. Elliott, P. Fagrelius, K. Fanning, S. Ferraro, J. Ereza, N. Findlay, B. Flaugher, A. Font-Ribera, D. Forero-Sánchez, J.E. Forero-Romero, C.S. Frenk, C. Garcia-Quintero, E. Gaztañaga, H. Gil-Marín, S.G.A. Gontcho, A.X. Gonzalez-Morales, V. Gonzalez-Perez, C. Gordon, D. Green, D. Gruen, R. Gsponer, G. Gutierrez, J. Guy, B. Hadzhiyska, C. Hahn, M.M.S. Hanif, H.K. Herrera-Alcantar, K. Honscheid, C. Howlett, D. Huterer, V. Iršič, M. Ishak, S. Juneau, N.G. Karaçaylı, R. Kehoe, S. Kent, D. Kirkby, A. Kremin, A. Krolewski, Y. Lai, T.-. Lan, M. Landriau, D. Lang, J. Lasker, J.M. Le Goff, L. Le Guillou, A. Leauthaud, M.E. Levi, T.S. Li, E. Linder, K. Lodha, C. Magneville, M. Manera, D. Margala, P. Martini, M. Maus, P. Mcdonald, L. Medina-Varela, A. Meisner, J. Mena-Fernández, R. Miquel, J. Moon, S. Moore, J. Moustakas, E. Mueller, A. Muñoz-Gutiérrez, A.D. Myers, S. Nadathur, L. Napolitano, R. Neveux, J.A. Newman, N.M. Nguyen, J. Nie, G. Niz, H.E. Noriega, N. Padmanabhan, E. Paillas, N. Palanque-Delabrouille, J. Pan, S. Penmetsa, W.J. Percival, M.M. Pieri, M. Pinon, C. Poppett, A. Porredon, F. Prada, A. Pérez-Fernández, I. Pérez-Ràfols, D. Rabinowitz, A. Raichoor, C. Ramírez-Pérez, S. Ramirez-Solano, M. Rashkovetskyi, C. Ravoux, M. Rezaie, J. Rich, A. Rocher, C. Rockosi, N.A. Roe, A. Rosado-Marin, A.J. Ross, G. Rossi, R. Ruggeri, V. Ruhlmann-Kleider, L. Samushia, E. Sanchez, C. Saulder, E.F. Schlafly, D. Schlegel, M. Schubnell, H. Seo, A. Shafieloo, R. Sharples, J. Silber, A. Slosar, A. Smith, D. Sprayberry, T. Tan, G. Tarlé, P. Taylor, S. Trusov, L.A. Ureña-López, R. Vaisakh, D. Valcin, F. Valdes, M. Vargas-Magaña, L. Verde, M. Walther, B. Wang, M.S. Wang, B.A. Weaver, N. Weaverdyck, R.H. Wechsler, D.H. Weinberg, M. White, J. Yu, Y. Yu, S. Yuan, C. Yèche, E.A. Zaborowski, P. Zarrouk, H. Zhang, C. Zhao, R. Zhao, R. Zhou, T. Zhuang, H. Zou, N. Null. - In: JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS. - ISSN 1475-7516. - 2025:2(2025), pp. 1-71. [10.1088/1475-7516/2025/02/021]
DESI 2024 VI: cosmological constraints from the measurements of baryon acoustic oscillations
A. Bera;D. Bianchi;
2025
Abstract
We present cosmological results from the measurement of baryon acoustic oscillations (BAO) in galaxy, quasar and Lyman-α forest tracers from the first year of observations from the Dark Energy Spectroscopic Instrument (DESI), to be released in the DESI Data Release 1. DESI BAO provide robust measurements of the transverse comoving distance and Hubble rate, or their combination, relative to the sound horizon, in seven redshift bins from over 6 million extragalactic objects in the redshift range 0.1 < z < 4.2. To mitigate confirmation bias, a blind analysis was implemented to measure the BAO scales. DESI BAO data alone are consistent with the standard flat ΛCDM cosmological model with a matter density Ωm=0.295±0.015. Paired with a baryon density prior from Big Bang Nucleosynthesis and the robustly measured acoustic angular scale from the cosmic microwave background (CMB), DESI requires H0=(68.52±0.62) km s-1 Mpc-1. In conjunction with CMB anisotropies from Planck and CMB lensing data from Planck and ACT, we find Ωm=0.307± 0.005 and H0=(67.97±0.38) km s-1 Mpc-1. Extending the baseline model with a constant dark energy equation of state parameter w, DESI BAO alone requirew=-0.99+0.15-0.13. In models with a time-varying dark energy equation of state parametrised by w0 and wa, combinations of DESI with CMB or with type Ia supernovae (SN Ia) individually prefer w0 > -1 and wa < 0. This preference is 2.6σ for the DESI+CMB combination, and persists or grows when SN Ia are added in, giving results discrepant with the ΛCDM model at the 2.5σ, 3.5σ or 3.9σ levels for the addition of the Pantheon+, Union3, or DES-SN5YR supernova datasets respectively. For the flat ΛCDM model with the sum of neutrino mass ∑ mν free, combining the DESI and CMB data yields an upper limit ∑ mν < 0.072 (0.113) eV at 95% confidence for a ∑ mν > 0 (∑ mν > 0.059) eV prior. These neutrino-mass constraints are substantially relaxed if the background dynamics are allowed to deviate from flat ΛCDM.| File | Dimensione | Formato | |
|---|---|---|---|
|
2404.03002v3.pdf
accesso aperto
Tipologia:
Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione
3.81 MB
Formato
Adobe PDF
|
3.81 MB | Adobe PDF | Visualizza/Apri |
|
Adame_2025_J._Cosmol._Astropart._Phys._2025_021(1).pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Dimensione
4.27 MB
Formato
Adobe PDF
|
4.27 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




