Consider a random walk on Zd in a translation-invariant and ergodic random environment and starting from the origin. In this short note, assuming that a quenched invariance principle for the opportunely-rescaled walks holds, we show how to derive an L1-convergence of the corresponding semigroups. We then apply this result to obtain a quenched pathwise hydrodynamic limit for the simple symmetric exclusion process on Zd, d ≥ 2, with i.i.d. symmetric nearest-neighbors conductances ωxy ∈ [0, ∞) only satisfying Q(ωxy > 0) > pc, where pc is the critical value for bond percolation.

From quenched invariance principle to semigroup convergence with applications to exclusion processes / A. Chiarini, S. Floreani, F. Sau. - In: ELECTRONIC COMMUNICATIONS IN PROBABILITY. - ISSN 1083-589X. - 29:(2024), pp. 36.1-36.17. [10.1214/24-ecp604]

From quenched invariance principle to semigroup convergence with applications to exclusion processes

F. Sau
Ultimo
2024

Abstract

Consider a random walk on Zd in a translation-invariant and ergodic random environment and starting from the origin. In this short note, assuming that a quenched invariance principle for the opportunely-rescaled walks holds, we show how to derive an L1-convergence of the corresponding semigroups. We then apply this result to obtain a quenched pathwise hydrodynamic limit for the simple symmetric exclusion process on Zd, d ≥ 2, with i.i.d. symmetric nearest-neighbors conductances ωxy ∈ [0, ∞) only satisfying Q(ωxy > 0) > pc, where pc is the critical value for bond percolation.
ergodic theorem; Hydrodynamic limit; quenched invariance principle; Symmetric exclusion process;
Settore MATH-03/B - Probabilità e statistica matematica
2024
https://projecteuclid.org/journals/electronic-communications-in-probability/volume-29/issue-none/From-quenched-invariance-principle-to-semigroup-convergence-with-applications-to/10.1214/24-ECP604.full
Article (author)
File in questo prodotto:
File Dimensione Formato  
24-ECP604.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 460.88 kB
Formato Adobe PDF
460.88 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1156710
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact