Substructural logics naturally support a quantitative interpretation of formulas, as they are seen as consumable resources. Distances are the quantitative counterpart of equivalence relations: they measure how much two objects are similar, rather than just saying whether they are equivalent or not. Hence, they provide the natural choice for modelling equality in a substructural setting. In this paper, we develop this idea, using the categorical language of Lawvere’s doctrines. We work in a minimal fragment of Linear Logic enriched by graded modalities, which are needed to write a resource sensitive substitution rule for equality, enabling its quantitative interpretation as a distance. We introduce both a deductive calculus and the notion of Lipschitz doctrine to give it a sound and complete categorical semantics. The study of 2-categorical properties of Lipschitz doctrines provides us with a universal construction, which generates examples based for instance on metric spaces and quantitative realisability. Finally, we show how to smoothly extend our results to richer substructural logics, up to full Linear Logic with quantifiers.

Quantitative Equality in Substructural Logic via Lipschitz Doctrines / F. Dagnino, F. Pasquali. - In: LOGICAL METHODS IN COMPUTER SCIENCE. - ISSN 1860-5974. - 21:1(2025), pp. 7.1-7.14. [10.46298/lmcs-21(1:7)2025]

Quantitative Equality in Substructural Logic via Lipschitz Doctrines

F. Pasquali
Ultimo
2025

Abstract

Substructural logics naturally support a quantitative interpretation of formulas, as they are seen as consumable resources. Distances are the quantitative counterpart of equivalence relations: they measure how much two objects are similar, rather than just saying whether they are equivalent or not. Hence, they provide the natural choice for modelling equality in a substructural setting. In this paper, we develop this idea, using the categorical language of Lawvere’s doctrines. We work in a minimal fragment of Linear Logic enriched by graded modalities, which are needed to write a resource sensitive substitution rule for equality, enabling its quantitative interpretation as a distance. We introduce both a deductive calculus and the notion of Lipschitz doctrine to give it a sound and complete categorical semantics. The study of 2-categorical properties of Lipschitz doctrines provides us with a universal construction, which generates examples based for instance on metric spaces and quantitative realisability. Finally, we show how to smoothly extend our results to richer substructural logics, up to full Linear Logic with quantifiers.
graded modalities; hyperdoctrines; linear logic; quantitative reasoning
Settore MATH-01/A - Logica matematica
2025
28-gen-2025
Article (author)
File in questo prodotto:
File Dimensione Formato  
2110.05388.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 719.64 kB
Formato Adobe PDF
719.64 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1156653
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact