In this paper, we introduce a random environment for the exclusion process in Zd obtained by assigning a maximal occupancy to each site. This maximal occupancy is allowed to randomly vary among sites, and partial exclusion occurs. Under the assumption of ergodicity under translation and uniform ellipticity of the environment, we derive a quenched hydrodynamic limit in path space by strengthening the mild solution approach initiated in Nagy (2002) and Faggionato (2007). To this purpose, we prove, employing the technology developed for the random conductance model, a homogenization result in the form of an arbitrary starting point quenched invariance principle for a single particle in the same environment, which is a result of independent interest. The self-duality property of the partial exclusion process allows us to transfer this homogenization result to the particle system and, then, apply the tightness criterion in Redig et al. (2020).

Hydrodynamics for the partial exclusion process in random environment / S. Floreani, F. Redig, F. Sau. - In: STOCHASTIC PROCESSES AND THEIR APPLICATIONS. - ISSN 0304-4149. - 142:(2021 Dec), pp. 124-158. [10.1016/j.spa.2021.08.006]

Hydrodynamics for the partial exclusion process in random environment

F. Sau
Ultimo
2021

Abstract

In this paper, we introduce a random environment for the exclusion process in Zd obtained by assigning a maximal occupancy to each site. This maximal occupancy is allowed to randomly vary among sites, and partial exclusion occurs. Under the assumption of ergodicity under translation and uniform ellipticity of the environment, we derive a quenched hydrodynamic limit in path space by strengthening the mild solution approach initiated in Nagy (2002) and Faggionato (2007). To this purpose, we prove, employing the technology developed for the random conductance model, a homogenization result in the form of an arbitrary starting point quenched invariance principle for a single particle in the same environment, which is a result of independent interest. The self-duality property of the partial exclusion process allows us to transfer this homogenization result to the particle system and, then, apply the tightness criterion in Redig et al. (2020).
Arbitrary starting point quenched invariance principle; Duality; Hydrodynamic limit; Mild solution; Random conductance model; Random environment;
Settore MATH-03/B - Probabilità e statistica matematica
dic-2021
https://www.sciencedirect.com/science/article/pii/S0304414921001307
Article (author)
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0304414921001307-main.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Licenza: Creative commons
Dimensione 2.07 MB
Formato Adobe PDF
2.07 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1156643
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 9
  • OpenAlex ND
social impact