We study the behavior of irregular fibrations of a variety under derived equivalence of its bounded derived category. In particular we prove the derived invariance of the existence of an irregular fibration over a variety of general type, extending the case of irrational pencils onto curves of genus g≥2. We also prove that a derived equivalence of such fibrations induces a derived equivalence between their general fibers.

Irregular fibrations of derived equivalent varieties / F. Caucci, L. Lombardi. - In: REVISTA MATEMATICA IBEROAMERICANA. - ISSN 0213-2230. - 41:3(2025 Mar), pp. 891-912. [Epub ahead of print] [10.4171/RMI/1546]

Irregular fibrations of derived equivalent varieties

F. Caucci
Primo
;
L. Lombardi
Ultimo
2025

Abstract

We study the behavior of irregular fibrations of a variety under derived equivalence of its bounded derived category. In particular we prove the derived invariance of the existence of an irregular fibration over a variety of general type, extending the case of irrational pencils onto curves of genus g≥2. We also prove that a derived equivalence of such fibrations induces a derived equivalence between their general fibers.
fibrations, Albanese map, derived categories of sheaves, Rouquier isomorphism
Settore MATH-02/B - Geometria
mar-2025
Article (author)
File in questo prodotto:
File Dimensione Formato  
Caucci_Lombardi_templateRMI.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 459.21 kB
Formato Adobe PDF
459.21 kB Adobe PDF Visualizza/Apri
10.4171-rmi-1546.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 548.63 kB
Formato Adobe PDF
548.63 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1156560
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex 0
social impact