In this paper we study the Poisson problem, \[ \begin{cases} -{\rm div}(d^\beta\nabla u)=f&{\rm in}\ \Om\\ u=0&{\rm on}\ \partial\Omega, \end{cases} \] where $\Om\subset\R^N$, $N\ge2$ is a smooth bounded domain, $f$ is a continuous function, $\beta< 1$, and $d(x)=dist(x,\partial\Omega )$. We describe the behaviour of $u$ near $\partial\Om$ and discuss some of its regularity properties.

Low regularity results for degenerate Poisson problems / M. Calanchi, M. Grossi. - (2025 Mar 11).

Low regularity results for degenerate Poisson problems

M. Calanchi;
2025

Abstract

In this paper we study the Poisson problem, \[ \begin{cases} -{\rm div}(d^\beta\nabla u)=f&{\rm in}\ \Om\\ u=0&{\rm on}\ \partial\Omega, \end{cases} \] where $\Om\subset\R^N$, $N\ge2$ is a smooth bounded domain, $f$ is a continuous function, $\beta< 1$, and $d(x)=dist(x,\partial\Omega )$. We describe the behaviour of $u$ near $\partial\Om$ and discuss some of its regularity properties.
Mathematics - Analysis of PDEs; Mathematics - Analysis of PDEs
Settore MATH-03/A - Analisi matematica
11-mar-2025
http://arxiv.org/abs/2503.08649v1
File in questo prodotto:
File Dimensione Formato  
2503.08649v1.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 184.44 kB
Formato Adobe PDF
184.44 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1153896
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact