A widely applied dose-response model is the Hill model with four parameters. In the Hill model, the measurement error may be homoscedastic or heteroscedastic. If the experimental points are fixed with the goal of identifying the right error-variance structure, then by applying the KL-criterion, we have that only two different doses are necessary. Hence, this optimum design does not enable any estimation of the parameters. From here the necessity to add some other experimental points. This work focuses on augmenting the KL-optimal design by the inclusion of two additional doses with the goal of providing an estimation of the model parameters, while guaranteeing a minimum KL-efficiency to optimally discriminate between the two variance structures.
A KL-Augmented Design for the Hill Model / C. de la Calle-Arroyo, S. Leorato, C. Tommasi (ITALIAN STATISTICAL SOCIETY SERIES ON ADVANCES IN STATISTICS). - In: Methodological and Applied Statistics and Demography II / [a cura di] A. Pollice, P. Mariani. - Prima edizione. - [s.l] : Springer Nature, 2025 Mar. - ISBN 9783031643491. - pp. 465-470 (( convegno Scientific Meeting of the Italian Statistical Society tenutosi a Bari nel 2024 [10.1007/978-3-031-64350-7_78].
A KL-Augmented Design for the Hill Model
S. Leorato
;C. Tommasi
2025
Abstract
A widely applied dose-response model is the Hill model with four parameters. In the Hill model, the measurement error may be homoscedastic or heteroscedastic. If the experimental points are fixed with the goal of identifying the right error-variance structure, then by applying the KL-criterion, we have that only two different doses are necessary. Hence, this optimum design does not enable any estimation of the parameters. From here the necessity to add some other experimental points. This work focuses on augmenting the KL-optimal design by the inclusion of two additional doses with the goal of providing an estimation of the model parameters, while guaranteeing a minimum KL-efficiency to optimally discriminate between the two variance structures.| File | Dimensione | Formato | |
|---|---|---|---|
|
978-3-031-64350-7_78.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Licenza:
Nessuna licenza
Dimensione
391.24 kB
Formato
Adobe PDF
|
391.24 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
LeoratoSIS2024.pdf
accesso aperto
Tipologia:
Pre-print (manoscritto inviato all'editore)
Licenza:
Creative commons
Dimensione
254.63 kB
Formato
Adobe PDF
|
254.63 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




