A widely applied dose-response model is the Hill model with four parameters. In the Hill model, the measurement error may be homoscedastic or heteroscedastic. If the experimental points are fixed with the goal of identifying the right error-variance structure, then by applying the KL-criterion, we have that only two different doses are necessary. Hence, this optimum design does not enable any estimation of the parameters. From here the necessity to add some other experimental points. This work focuses on augmenting the KL-optimal design by the inclusion of two additional doses with the goal of providing an estimation of the model parameters, while guaranteeing a minimum KL-efficiency to optimally discriminate between the two variance structures.

A KL-Augmented Design for the Hill Model / C. de la Calle-Arroyo, S. Leorato, C. Tommasi (ITALIAN STATISTICAL SOCIETY SERIES ON ADVANCES IN STATISTICS). - In: Methodological and Applied Statistics and Demography II / [a cura di] A. Pollice, P. Mariani. - Prima edizione. - [s.l] : Springer Nature, 2025 Mar. - ISBN 9783031643491. - pp. 465-470 (( convegno Scientific Meeting of the Italian Statistical Society tenutosi a Bari nel 2024 [10.1007/978-3-031-64350-7_78].

A KL-Augmented Design for the Hill Model

S. Leorato
;
C. Tommasi
2025

Abstract

A widely applied dose-response model is the Hill model with four parameters. In the Hill model, the measurement error may be homoscedastic or heteroscedastic. If the experimental points are fixed with the goal of identifying the right error-variance structure, then by applying the KL-criterion, we have that only two different doses are necessary. Hence, this optimum design does not enable any estimation of the parameters. From here the necessity to add some other experimental points. This work focuses on augmenting the KL-optimal design by the inclusion of two additional doses with the goal of providing an estimation of the model parameters, while guaranteeing a minimum KL-efficiency to optimally discriminate between the two variance structures.
Augmentation design; KL-optimality; D-optimality
Settore STAT-01/A - Statistica
   Optimal and adaptive designs for modern medical experimentation
   MINISTERO DELL'UNIVERSITA' E DELLA RICERCA
   2022TRB44L_002
mar-2025
Book Part (author)
File in questo prodotto:
File Dimensione Formato  
978-3-031-64350-7_78.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Licenza: Nessuna licenza
Dimensione 391.24 kB
Formato Adobe PDF
391.24 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
LeoratoSIS2024.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Licenza: Creative commons
Dimensione 254.63 kB
Formato Adobe PDF
254.63 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1152675
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex 0
social impact