We prove an extension of Eells and Sampson's rigidity theorem for harmonic maps from a closed manifold of non-negative Ricci curvature to a manifold of non-positive sectional curvature. We give an application of our result in the setting of harmonic-Einstein (or Ricci-harmonic) metrics and as a consequence we also recover a classical rigidity result of Hamilton for the problem of prescribed positive definite Ricci curvature.
A sharp Eells-Sampson type theorem under positive sectional curvature upper bounds / G. Colombo, M. Mariani, M. Rigoli. - In: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. - ISSN 0022-247X. - 540:1(2024 Dec), pp. 128584.1-128584.10. [10.1016/j.jmaa.2024.128584]
A sharp Eells-Sampson type theorem under positive sectional curvature upper bounds
G. Colombo
Primo
;M. MarianiPenultimo
;M. RigoliUltimo
2024
Abstract
We prove an extension of Eells and Sampson's rigidity theorem for harmonic maps from a closed manifold of non-negative Ricci curvature to a manifold of non-positive sectional curvature. We give an application of our result in the setting of harmonic-Einstein (or Ricci-harmonic) metrics and as a consequence we also recover a classical rigidity result of Hamilton for the problem of prescribed positive definite Ricci curvature.| File | Dimensione | Formato | |
|---|---|---|---|
|
ColomboMarianiRigoli_Sharp_Eells-Sampson_type_theorem.pdf
embargo fino al 01/12/2026
Descrizione: Author's Accepted Manuscript
Tipologia:
Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione
480.08 kB
Formato
Adobe PDF
|
480.08 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
1-s2.0-S0022247X24005067-main.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
322.3 kB
Formato
Adobe PDF
|
322.3 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




