We prove that a compact Riemannian manifold of dimension m ≥ 3 with harmonic curvature and ⌊(m-1)/2⌋-positive curvature operator has constant sectional curvature, extending the classical Tachibana theorem for manifolds with positive curvature operator. The condition of ⌊(m-1)/2⌋-positivity originates from recent work of Petersen and Wink, who proved a similar Tachibana-type theorem under the stronger condition that the manifold be Einstein. We show that the same rigidity property holds for complete manifolds assuming either parabolicity, an integral bound on the Weyl tensor or a stronger pointwise positive lower bound on the average of the first ⌊(m-1)/2⌋ eigenvalues of the curvature operator. For 3-manifolds, we show that positivity of the curvature operator can be relaxed to positivity of the Ricci tensor.

Tachibana-type theorems on complete manifolds / G. Colombo, M. Mariani, M. Rigoli. - In: ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA. CLASSE DI SCIENZE. - ISSN 0391-173X. - 25:2(2024), pp. 1033-1083. [10.2422/2036-2145.202203_018]

Tachibana-type theorems on complete manifolds

G. Colombo
Primo
;
M. Mariani
Penultimo
;
M. Rigoli
Ultimo
2024

Abstract

We prove that a compact Riemannian manifold of dimension m ≥ 3 with harmonic curvature and ⌊(m-1)/2⌋-positive curvature operator has constant sectional curvature, extending the classical Tachibana theorem for manifolds with positive curvature operator. The condition of ⌊(m-1)/2⌋-positivity originates from recent work of Petersen and Wink, who proved a similar Tachibana-type theorem under the stronger condition that the manifold be Einstein. We show that the same rigidity property holds for complete manifolds assuming either parabolicity, an integral bound on the Weyl tensor or a stronger pointwise positive lower bound on the average of the first ⌊(m-1)/2⌋ eigenvalues of the curvature operator. For 3-manifolds, we show that positivity of the curvature operator can be relaxed to positivity of the Ricci tensor.
Settore MATH-02/B - Geometria
Settore MATH-03/A - Analisi matematica
2024
https://dx.doi.org/10.2422/2036-2145.202203_018
Article (author)
File in questo prodotto:
File Dimensione Formato  
5887-Article Text-2979-1-10-20240701(1).pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 318.13 kB
Formato Adobe PDF
318.13 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1152096
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact