The second-order nonlinear optical (NLO) properties of the known heteroleptic complex [Cu(1,10-phenanthroline)xantphos][PF6] (complex 1) and the related new complexes [Cu(5-NO2-1,10-phenanthroline)xantphos][PF6] and [Cu(5-NO2-1,10-phenanthroline)(dppe)][PF6] (dppe = 1,2-bis(diphenylphosphino)ethane) (complexes 2 and 3) were investigated in solution by the EFISH (Electric Field-Induced Second Harmonic generation) technique, working at a non-resonant wavelength of 1907 nm. It turned out that they are characterized by large μβ values (957–1100 × 10−48 esu), much higher than that of the Disperse Red One benchmark. Unexpectedly, the homoleptic complex [Cu(2-mesityl-1,10-phenanthroline)2][PF6] (complex 4) shows a similar high second-order NLO response. Quantum chemical calculations based on Density Functional Theory (DFT) methods have been carried out to give insight into the electronic structure of the investigated complexes in relation to NLO properties. This investigation, which represents the first EFISH study on copper(I) complexes, opens a convenient route for the development of low-cost dipolar NLO-active heteroleptic [Cu(P^P)(N^N)][PF6] and homoleptic [Cu(N^N)2][PF6] complexes.

Dipolar Copper(I) Complexes: A Novel Appealing Class of Highly Active Second-Order NLO-Phores / A. Colombo, C. Dragonetti, F. Fagnani, D. Roberto, S. Fantacci. - In: MOLECULES. - ISSN 1420-3049. - 30:5(2025 Mar 01), pp. 1009.1-1009.12. [10.3390/molecules30051009]

Dipolar Copper(I) Complexes: A Novel Appealing Class of Highly Active Second-Order NLO-Phores

A. Colombo
Primo
;
C. Dragonetti
Secondo
;
F. Fagnani
;
D. Roberto
Penultimo
;
2025

Abstract

The second-order nonlinear optical (NLO) properties of the known heteroleptic complex [Cu(1,10-phenanthroline)xantphos][PF6] (complex 1) and the related new complexes [Cu(5-NO2-1,10-phenanthroline)xantphos][PF6] and [Cu(5-NO2-1,10-phenanthroline)(dppe)][PF6] (dppe = 1,2-bis(diphenylphosphino)ethane) (complexes 2 and 3) were investigated in solution by the EFISH (Electric Field-Induced Second Harmonic generation) technique, working at a non-resonant wavelength of 1907 nm. It turned out that they are characterized by large μβ values (957–1100 × 10−48 esu), much higher than that of the Disperse Red One benchmark. Unexpectedly, the homoleptic complex [Cu(2-mesityl-1,10-phenanthroline)2][PF6] (complex 4) shows a similar high second-order NLO response. Quantum chemical calculations based on Density Functional Theory (DFT) methods have been carried out to give insight into the electronic structure of the investigated complexes in relation to NLO properties. This investigation, which represents the first EFISH study on copper(I) complexes, opens a convenient route for the development of low-cost dipolar NLO-active heteroleptic [Cu(P^P)(N^N)][PF6] and homoleptic [Cu(N^N)2][PF6] complexes.
copper complexes; EFISH; nonlinear optics
Settore CHEM-03/A - Chimica generale e inorganica
1-mar-2025
21-feb-2025
Article (author)
File in questo prodotto:
File Dimensione Formato  
Molecules Cu NLO 2025.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.28 MB
Formato Adobe PDF
1.28 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1150880
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact