The second-order nonlinear optical (NLO) properties of the known heteroleptic complex [Cu(1,10-phenanthroline)xantphos][PF6] (complex 1) and the related new complexes [Cu(5-NO2-1,10-phenanthroline)xantphos][PF6] and [Cu(5-NO2-1,10-phenanthroline)(dppe)][PF6] (dppe = 1,2-bis(diphenylphosphino)ethane) (complexes 2 and 3) were investigated in solution by the EFISH (Electric Field-Induced Second Harmonic generation) technique, working at a non-resonant wavelength of 1907 nm. It turned out that they are characterized by large μβ values (957–1100 × 10−48 esu), much higher than that of the Disperse Red One benchmark. Unexpectedly, the homoleptic complex [Cu(2-mesityl-1,10-phenanthroline)2][PF6] (complex 4) shows a similar high second-order NLO response. Quantum chemical calculations based on Density Functional Theory (DFT) methods have been carried out to give insight into the electronic structure of the investigated complexes in relation to NLO properties. This investigation, which represents the first EFISH study on copper(I) complexes, opens a convenient route for the development of low-cost dipolar NLO-active heteroleptic [Cu(P^P)(N^N)][PF6] and homoleptic [Cu(N^N)2][PF6] complexes.
Dipolar Copper(I) Complexes: A Novel Appealing Class of Highly Active Second-Order NLO-Phores / A. Colombo, C. Dragonetti, F. Fagnani, D. Roberto, S. Fantacci. - In: MOLECULES. - ISSN 1420-3049. - 30:5(2025 Mar 01), pp. 1009.1-1009.12. [10.3390/molecules30051009]
Dipolar Copper(I) Complexes: A Novel Appealing Class of Highly Active Second-Order NLO-Phores
A. ColomboPrimo
;C. DragonettiSecondo
;F. Fagnani
;D. RobertoPenultimo
;
2025
Abstract
The second-order nonlinear optical (NLO) properties of the known heteroleptic complex [Cu(1,10-phenanthroline)xantphos][PF6] (complex 1) and the related new complexes [Cu(5-NO2-1,10-phenanthroline)xantphos][PF6] and [Cu(5-NO2-1,10-phenanthroline)(dppe)][PF6] (dppe = 1,2-bis(diphenylphosphino)ethane) (complexes 2 and 3) were investigated in solution by the EFISH (Electric Field-Induced Second Harmonic generation) technique, working at a non-resonant wavelength of 1907 nm. It turned out that they are characterized by large μβ values (957–1100 × 10−48 esu), much higher than that of the Disperse Red One benchmark. Unexpectedly, the homoleptic complex [Cu(2-mesityl-1,10-phenanthroline)2][PF6] (complex 4) shows a similar high second-order NLO response. Quantum chemical calculations based on Density Functional Theory (DFT) methods have been carried out to give insight into the electronic structure of the investigated complexes in relation to NLO properties. This investigation, which represents the first EFISH study on copper(I) complexes, opens a convenient route for the development of low-cost dipolar NLO-active heteroleptic [Cu(P^P)(N^N)][PF6] and homoleptic [Cu(N^N)2][PF6] complexes.File | Dimensione | Formato | |
---|---|---|---|
Molecules Cu NLO 2025.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Dimensione
1.28 MB
Formato
Adobe PDF
|
1.28 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.