Reduced-rank (RR) regression may be interpreted as a dimensionality reduction technique able to reveal complex relationships among the data parsimoniously. However, RR regression models typically overlook any potential group structure among the responses by assuming a low-rank structure on the coefficient matrix. To address this limitation, a Bayesian Partial RR (BPRR) regression is exploited, where the response vector and the coefficient matrix are partitioned into low- and full-rank sub-groups. As opposed to the literature, which assumes known group structure and rank, a novel strategy is introduced that treats them as unknown parameters to be estimated. The main contribution is two-fold: an approach to infer the low- and full-rank group memberships from the data is proposed, and then, conditionally on this allocation, the corresponding (reduced) rank is estimated. Both steps are carried out in a Bayesian approach, allowing for full uncertainty quantification and based on a partially collapsed Gibbs sampler. It relies on a Laplace approximation of the marginal likelihood and the Metropolized Shotgun Stochastic Search to estimate the group allocation efficiently. Applications to synthetic and real-world data reveal the potential of the proposed method to reveal hidden structures in the data.
Bayesian Partial Reduced-Rank Regression / M.F. Pintado, M. Iacopini, L. Rossini, A.Y. Shestopaloff. - In: JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS. - ISSN 1061-8600. - (2025), pp. 1-20. [Epub ahead of print] [10.1080/10618600.2024.2446357]
Bayesian Partial Reduced-Rank Regression
L. Rossini;
2025
Abstract
Reduced-rank (RR) regression may be interpreted as a dimensionality reduction technique able to reveal complex relationships among the data parsimoniously. However, RR regression models typically overlook any potential group structure among the responses by assuming a low-rank structure on the coefficient matrix. To address this limitation, a Bayesian Partial RR (BPRR) regression is exploited, where the response vector and the coefficient matrix are partitioned into low- and full-rank sub-groups. As opposed to the literature, which assumes known group structure and rank, a novel strategy is introduced that treats them as unknown parameters to be estimated. The main contribution is two-fold: an approach to infer the low- and full-rank group memberships from the data is proposed, and then, conditionally on this allocation, the corresponding (reduced) rank is estimated. Both steps are carried out in a Bayesian approach, allowing for full uncertainty quantification and based on a partially collapsed Gibbs sampler. It relies on a Laplace approximation of the marginal likelihood and the Metropolized Shotgun Stochastic Search to estimate the group allocation efficiently. Applications to synthetic and real-world data reveal the potential of the proposed method to reveal hidden structures in the data.| File | Dimensione | Formato | |
|---|---|---|---|
|
Bayesian Partial Reduced-Rank Regression.pdf
accesso aperto
Descrizione: online first
Tipologia:
Publisher's version/PDF
Dimensione
2.32 MB
Formato
Adobe PDF
|
2.32 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




