For a finite, positive Borel measure μ on (0, 1) we consider an infinite matrix Γμ, related to the classical Hausdorff matrix defined by the same measure μ, in the same algebraic way that the Hilbert matrix is related to the Cesáro matrix. When μ is the Lebesgue measure, Γμ reduces to the classical Hilbert matrix. We prove that the matrices Γμ are not Hankel, unless μ is a constant multiple of the Lebesgue measure, we give necessary and sufficient conditions for their boundedness on the scale of Hardy spaces Hp, 1 ≤ p < ∞, and we study their compactness and complete continuity properties. In the case 2 ≤ p < ∞, we are able to compute the exact value of the norm of the operator.

Generalized Hilbert operators arising from Hausdorff matrices / C. Bellavita, N. Chalmoukis, V. Daskalogiannis, G. Stylogiannis. - In: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9939. - 152:11(2024 Nov), pp. 4759-4773. [10.1090/proc/16917]

Generalized Hilbert operators arising from Hausdorff matrices

C. Bellavita
Primo
;
2024

Abstract

For a finite, positive Borel measure μ on (0, 1) we consider an infinite matrix Γμ, related to the classical Hausdorff matrix defined by the same measure μ, in the same algebraic way that the Hilbert matrix is related to the Cesáro matrix. When μ is the Lebesgue measure, Γμ reduces to the classical Hilbert matrix. We prove that the matrices Γμ are not Hankel, unless μ is a constant multiple of the Lebesgue measure, we give necessary and sufficient conditions for their boundedness on the scale of Hardy spaces Hp, 1 ≤ p < ∞, and we study their compactness and complete continuity properties. In the case 2 ≤ p < ∞, we are able to compute the exact value of the norm of the operator.
Cesáro; Generalized Hilbert; Hardy spaces; Hausdorff matrices
Settore MATH-03/A - Analisi matematica
nov-2024
10-set-2024
Article (author)
File in questo prodotto:
File Dimensione Formato  
S0002-9939-2024-16917-3.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 226.26 kB
Formato Adobe PDF
226.26 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2307.15334v2.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 210.65 kB
Formato Adobe PDF
210.65 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1143036
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact