We consider the equation - Δ p u = f (u) {-Deltap}u=f(u)} in a smooth bounded domain of R n {mathbb{R}-{n}}, where Δ p {Deltap}} is the p-Laplace operator. Explicit examples of unbounded stable energy solutions are known if n ≥ p + 4 p p - 1 {ngeq p+frac{4p}{p-1}}. Instead, when n < p + 4 p p - 1 {n

Optimal regularity of stable solutions to nonlinear equations involving the p-Laplacian / X. Cabré, P. Miraglio, M. Sanchón. - In: ADVANCES IN CALCULUS OF VARIATIONS. - ISSN 1864-8258. - 15:4(2022), pp. 749-785. [10.1515/acv-2020-0055]

Optimal regularity of stable solutions to nonlinear equations involving the p-Laplacian

P. Miraglio
Penultimo
;
2022

Abstract

We consider the equation - Δ p u = f (u) {-Deltap}u=f(u)} in a smooth bounded domain of R n {mathbb{R}-{n}}, where Δ p {Deltap}} is the p-Laplace operator. Explicit examples of unbounded stable energy solutions are known if n ≥ p + 4 p p - 1 {ngeq p+frac{4p}{p-1}}. Instead, when n < p + 4 p p - 1 {n
a priori estimates; extremal solutions; regularity; stable solutions
Settore MATH-03/A - Analisi matematica
2022
Article (author)
File in questo prodotto:
File Dimensione Formato  
10.1515_acv-2020-0055.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.09 MB
Formato Adobe PDF
1.09 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1142995
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
  • OpenAlex ND
social impact