Calcium (Ca2+)-dependent signalling plays a well-characterised role in the perception and response mechanisms to environmental stimuli in plant cells. In the context of a constantly changing environment, it is fundamental to understand how crop yield and microalgal biomass productivity are affected by external factors. Ca2+ signalling is known to be important in different physiological processes in microalgae but many of these signal transduction pathways still need to be characterised. Here, compartment-specific Ca2+ dynamics were monitored in Chlamydomonas reinhardtii cells in response to environmental stressors, such as nutrient availability, osmotic stress, temperature fluctuations and carbon sensing. An in vivo single-cell imaging approach was adopted to directly visualise changes of Ca2+ concentrations at the level of specific subcellular compartments, using C. reinhardtii lines expressing a genetically encoded ratiometric Ca2+ indicator. Hyper-osmotic shock caused cytosolic and chloroplast Ca2+ elevations, whereas high temperature and inorganic carbon availability primarily induced Ca2+ transients in the chloroplast. In contrast, hypo-osmotic stress only induced Ca2+ elevations in the cytosol. The results herein reported show that in Chlamydomonas cells compartment-specific Ca2+ transients are closely related to specific external environmental stimuli, providing useful guidance for studying signal transduction mechanisms exploited by microalgae to respond to specific natural conditions.

Abiotic Stress-Induced Chloroplast and Cytosolic Ca2+ Dynamics in the Green Alga Chlamydomonas reinhardtii / M. Pivato, A. Costa, G. Wheeler, M. Ballottari. - In: PLANT, CELL & ENVIRONMENT. - ISSN 1365-3040. - (2025), pp. 1-16. [Epub ahead of print] [10.1111/pce.15401]

Abiotic Stress-Induced Chloroplast and Cytosolic Ca2+ Dynamics in the Green Alga Chlamydomonas reinhardtii

A. Costa
Secondo
;
2025

Abstract

Calcium (Ca2+)-dependent signalling plays a well-characterised role in the perception and response mechanisms to environmental stimuli in plant cells. In the context of a constantly changing environment, it is fundamental to understand how crop yield and microalgal biomass productivity are affected by external factors. Ca2+ signalling is known to be important in different physiological processes in microalgae but many of these signal transduction pathways still need to be characterised. Here, compartment-specific Ca2+ dynamics were monitored in Chlamydomonas reinhardtii cells in response to environmental stressors, such as nutrient availability, osmotic stress, temperature fluctuations and carbon sensing. An in vivo single-cell imaging approach was adopted to directly visualise changes of Ca2+ concentrations at the level of specific subcellular compartments, using C. reinhardtii lines expressing a genetically encoded ratiometric Ca2+ indicator. Hyper-osmotic shock caused cytosolic and chloroplast Ca2+ elevations, whereas high temperature and inorganic carbon availability primarily induced Ca2+ transients in the chloroplast. In contrast, hypo-osmotic stress only induced Ca2+ elevations in the cytosol. The results herein reported show that in Chlamydomonas cells compartment-specific Ca2+ transients are closely related to specific external environmental stimuli, providing useful guidance for studying signal transduction mechanisms exploited by microalgae to respond to specific natural conditions.
Chlamydomonas; abiotic stress; calcium signalling; chloroplast; heat stress; microalgae; osmotic stress; pyrenoid
Settore BIOS-02/A - Fisiologia vegetale
2025
24-gen-2025
Article (author)
File in questo prodotto:
File Dimensione Formato  
Plant Cell Environment - 2025 - Pivato - Abiotic Stress‐Induced Chloroplast and Cytosolic Ca2 Dynamics in the Green Alga.pdf

accesso aperto

Descrizione: Online Version of Record before inclusion in an issue
Tipologia: Publisher's version/PDF
Licenza: Creative commons
Dimensione 3.31 MB
Formato Adobe PDF
3.31 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1138555
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact