Discrete-time quantum walk (DTQW) represents a convenient mathematical framework for describing the motion of a particle on a discrete set of positions when this motion is conditioned by the values of certain internal degrees of freedom, which are usually referred to as the coin of the particle. As such, and owing to the inherent dependence of the position distribution on the coin degrees of freedom, DTQWs naturally emerge as promising candidates for quantum metrology. In this paper, we explore the use of DTQWs as quantum probes in scenarios where the parameter of interest is encoded in the internal degree of freedom of the walker and investigate the role of the topology of the walker's space on the attainable precision. In particular, we start considering the encoding of the parameter by rotations for a walker on the line and evaluate the quantum Fisher information (QFI) and the position Fisher information (FI), explicitly determining the optimal initial state in position space that maximizes the QFI across all encoding schemes. This allows us to understand the role of interference in the position space and to introduce an optimal topology, which maximizes the QFI of the coin parameter and makes the position FI equal to the QFI.

Optimizing topology for quantum probing with discrete-time quantum walks / S. Cavazzoni, P. Bordone, M. Paris. - In: AVS QUANTUM SCIENCE. - ISSN 2639-0213. - 6:4(2024 Oct 04), pp. 044401.1-044401.10. [10.1116/5.0220640]

Optimizing topology for quantum probing with discrete-time quantum walks

M. Paris
Ultimo
2024

Abstract

Discrete-time quantum walk (DTQW) represents a convenient mathematical framework for describing the motion of a particle on a discrete set of positions when this motion is conditioned by the values of certain internal degrees of freedom, which are usually referred to as the coin of the particle. As such, and owing to the inherent dependence of the position distribution on the coin degrees of freedom, DTQWs naturally emerge as promising candidates for quantum metrology. In this paper, we explore the use of DTQWs as quantum probes in scenarios where the parameter of interest is encoded in the internal degree of freedom of the walker and investigate the role of the topology of the walker's space on the attainable precision. In particular, we start considering the encoding of the parameter by rotations for a walker on the line and evaluate the quantum Fisher information (QFI) and the position Fisher information (FI), explicitly determining the optimal initial state in position space that maximizes the QFI across all encoding schemes. This allows us to understand the role of interference in the position space and to introduce an optimal topology, which maximizes the QFI of the coin parameter and makes the position FI equal to the QFI.
Settore PHYS-04/A - Fisica teorica della materia, modelli, metodi matematici e applicazioni
   Recovering Information in Sloppy QUantum modEls (RISQUE)
   RISQUE
   MINISTERO DELL'UNIVERSITA' E DELLA RICERCA
   2022T25TR3_003
4-ott-2024
Article (author)
File in questo prodotto:
File Dimensione Formato  
AQS24-AR-00055.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 327.12 kB
Formato Adobe PDF
327.12 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1138075
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact